Review on Solar Powered Desiccant Wheel Cooling System

Author(s):  
Khushboo Singh

Nowadays, there is still a big amount of needs in air conditioning system with environmental change and improvement of living standards. However, air conditioning system have already accounted for a large part of energy consumption in the whole society, and then how to effectively increase the energy utilization. Desiccant wheel cooling system operate on the principle of adsorption dehumidification and evaporate cooling. The system adopts natural substance as working fluid and can be driven by low grade thermal energy such as solar energy. Due to this merit, solar powered desiccant wheel cooling system has recognized as one of good alternative to conventional vapor compression air conditioning system and has obtained increasing interest in the past years. This review paper aims to summarize recent research development related to solar powered desiccant wheel cooling system and to provide information for potential application. The cooling potential of the system is based on the performance of the desiccant wheel that removes humidity from outside air to increase the potential of the humidifier.

Author(s):  
Yilin Du ◽  
Jan Muehlbauer ◽  
Jiazhen Ling ◽  
Vikrant Aute ◽  
Yunho Hwang ◽  
...  

A rechargeable personal air-conditioning (RPAC) device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The conditioned air is discharged towards a single person through adjustable nozzle. The main focus of the current research was on the development of the cooling system. A 100 W cooling capacity prototype was designed, built, and tested. The cooling capacity of the vapor compression cycle measured was 165.6 W. The PCM was recharged in nearly 8 hours under thermosiphon mode. When this device is used in the controlled built environment, the thermostat setting can be increased so that building air conditioning energy can be saved by about 5–10%.


2019 ◽  
Vol 27 (02) ◽  
pp. 1930002 ◽  
Author(s):  
Aklilu Tesfamichael Baheta ◽  
Kar Kin Looi ◽  
Ahmed Nurye Oumer ◽  
Khairul Habib

The high reliability, the absence of working fluid and auxiliary pipes in the thermoelectric cooling application have attracted the attention of researchers in the last two decades. However, the use of thermoelectric air-conditioning system for building application has not been entirely explored due to its low coefficient of performance (COP) compared to the conventional air conditioning system. To overcome this primary limitation, different COP enhancement techniques of thermoelectric for air conditioning system building application are made available. This paper provides the recent development of thermoelectric air conditioning system in building applications, such as thermoelectric radiant panel ceiling, thermoelectric air duct system and thermoelectric cooling facades. It also provides the different strategies to enhance its performance in order to fit this technology in real building applications such as the integration of water-cooling system, phase change materials, evaporator cooling system and nanofluid micro-channel heat sinks. Lastly, the challenges of thermoelectric air-conditioning systems and future research directions are discussed.


2013 ◽  
Vol 732-733 ◽  
pp. 609-614
Author(s):  
Tong Hua Zou ◽  
Gu Jia ◽  
Fa Li Cao ◽  
Rong Yu

In the paper, changes of both outlet temperature and relative humidity of solar powered two-stage wheel desiccant air conditioning system are tested with time under the typical Tianjin summer condition. It is found that supply air temperature of the solar driven desiccant cooling system could steady below 21 degrees Celsius, and the relative humidity of it is more than sixty percent in most of time of the actual operation. When operating, the thermal coefficient of performance of the whole air conditioning unit is about 0.5, and the reliability of two-stage wheel desiccant air conditioning system is verified.


2019 ◽  
pp. 01-13
Author(s):  
Jani DB

Desiccant-based dehumidification and air conditioning systems are considered as an energy efficient alternative to traditional vapor compression based air-conditioning systems for green building cooling technology especially in tropical hot and humid ambient climates. It is a novel green cooling technology that makes use of low-grade heat for building air conditioning. It is seen that the desiccant based dehumidification and cooling can efficiently provide comfort conditions in subtropical and especially hot and humid tropical climates. The desiccant integrated novel cooling system has a significant higher coefficient of performance compared to the conventional vapor compression system resulting to substantial electrical energy savings during the summer season by use of renewable solar energy, which also resulted in to major reduction in CO2 emissions. Therefore, these results demonstrate that there is a good potential in desiccant-based dehumidification and cooling system for energy and carbon savings while carry out building air-conditioning. Through a literature review, the feasibility of the desiccant assisted air conditioning in hot and humid climatic conditions is proven and the advantages it can offer in terms energy and cost savings are underscored. Keywords: Air-conditioning; Desiccant cooling; Dehumidification; Green cooling; Thermal comfort


2013 ◽  
Vol 732-733 ◽  
pp. 531-536
Author(s):  
Tong Hua Zou ◽  
Min Wang ◽  
Sai Feng Deng ◽  
Yong Li

Evaporative cooling technology is a refrigeration technology by water evaporating endothermic, with zero-pollution, environmental-friendly, energy saving, and other advantages, which makes it widely used. Nevertheless, due to its working characteristic, the application of evaporative cooling technology is limited, particularly in some areas with high humidity. Using the liquid desiccant dehumidification and evaporative cooling technology leads to a solution, named liquid desiccant evaporative cooling air conditioning system extends the application of evaporative cooling technology. This article on liquid desiccant evaporative cooling system provides a brief overview about research status, full usage of the low grade thermal energy, the practical application and new development of the system.


2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


Sign in / Sign up

Export Citation Format

Share Document