scholarly journals Efficacy of α-tocopherol administration in community-acquired pneumonia

2007 ◽  
pp. 99-102
Author(s):  
F. R. Farkhutdinov

We studied effect of α tocopherol on clinical course and production of reactive oxygen species (ROS) in the whole blood in patients with community acquired pneumonia (CAP). The trial involved 70 patients with CAP. Generation of ROS was studied using the luminol dependent chemilumines cence (LDCL) method. Conventional treatment was given to all the patients. Besides this, 35 patients received α tocopherol. LDCL intensity of the blood was enhanced in all the patients. Treatment with α-tocopherol decreased ROS blood concentration and resulted in positive dynamics of clini cal and laboratory parameters. By contrast, patients on the conventional treatment maintained high LDCL intensity and there was slowly resolved course of inflammation in many cases. So, α tocopherol improved redox status in patients with CAP and increased efficiency of the treatment.

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1586
Author(s):  
Svetlana Veselova ◽  
Tatyana Nuzhnaya ◽  
Guzel Burkhanova ◽  
Sergey Rumyantsev ◽  
Igor Maksimov

Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1–SnToxA, Snn1–SnTox1and Snn3–SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3–SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1–SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1–SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host’s own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.


Antioxidants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 105 ◽  
Author(s):  
Janků ◽  
Luhová ◽  
Petřivalský

Reactive oxygen species (ROS) have been recognized as important signaling compoundsof major importance in a number of developmental and physiological processes in plants. Theexistence of cellular compartments enables efficient redox compartmentalization and ensuresproper functioning of ROS‐dependent signaling pathways. Similar to other organisms, theproduction of individual ROS in plant cells is highly localized and regulated bycompartment‐specific enzyme pathways on transcriptional and post‐translational level. ROSmetabolism and signaling in specific compartments are greatly affected by their chemicalinteractions with other reactive radical species, ROS scavengers and antioxidant enzymes. Adysregulation of the redox status, as a consequence of induced ROS generation or decreasedcapacity of their removal, occurs in plants exposed to diverse stress conditions. During stresscondition, strong induction of ROS‐generating systems or attenuated ROS scavenging can lead tooxidative or nitrosative stress conditions, associated with potential damaging modifications of cellbiomolecules. Here, we present an overview of compartment‐specific pathways of ROS productionand degradation and mechanisms of ROS homeostasis control within plant cell compartments.


2007 ◽  
Vol 34 (7) ◽  
pp. 601 ◽  
Author(s):  
Stanislawa Pukacka ◽  
Ewelina Ratajczak

The ascorbate–glutathione system was studied during development and desiccation of seeds of two Acer species differing in desiccation tolerance: Norway maple (Acer platanoides L., orthodox) and sycamore (Acer pseudoplatanus L., recalcitrant). The results showed remarkable differences in the concentration and redox balance of ascorbate and glutathione between these two kinds of seeds during development, and a significant dependence between glutathione content and acquisition of desiccation tolerance in Norway maple seeds. There were relatively small differences between the species in the activities of enzymes of the ascorbate–glutathione cycle: ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2). At the end of seed maturation, ascorbic acid content and the activities of the above enzymes was about the same in both species The electrophoretic pattern of APX isoenzymes was also similar for both species, and the intensity of the bands decreased at the end of seed maturation in both species. When sycamore seeds were desiccated to a moisture content of less than 26%, there was a marked decrease in seed viability and an increase in the production of reactive oxygen species. During desiccation, Norway maple seeds had a more active defence system, which was reflected in a higher glutathione content, a higher glutathione redox status, a higher ascorbate redox status, and higher activities of APX, MR, DHAR, GR and GPX (glutathione peroxidase). During desiccation, sulfhydryl-to-disulfide transition into proteins was more intense in Norway maple seeds than sycamore seeds. All of these results suggest that, in orthodox seeds, the ascorbate–glutathione cycle plays an important role in the acquisition of tolerance to desiccation, in protein maturation, and in protection from reactive oxygen species.


Life Sciences ◽  
2014 ◽  
Vol 100 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Ondrej Vasicek ◽  
Antonin Lojek ◽  
Viera Jancinova ◽  
Radomir Nosal ◽  
Milan Ciz

1997 ◽  
Vol 22 (3) ◽  
pp. 433-438 ◽  
Author(s):  
Elisabeth M Kukovetz ◽  
Gerhard Bratschitsch ◽  
Herwig P Hofer ◽  
Gerd Egger ◽  
Rudolf J Schaur

2018 ◽  
Vol 120 ◽  
pp. S22
Author(s):  
Jonas Hahn ◽  
Deborah Kienhöfer ◽  
Janka-Zsofia Csepregi ◽  
Julia Stoof ◽  
Malin Hultqvist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document