Central monoaminergic systems sensitivity to acute hypoxia with hypercapnia changes after the maintenance under the long-term social isolation

2018 ◽  
Vol 64 (6) ◽  
pp. 511-516 ◽  
Author(s):  
I.V. Karpova ◽  
V.V. Mikheev ◽  
V.V. Marysheva ◽  
N.A. Kuritcyna ◽  
E.R. Bychkov ◽  
...  

The experiments were performed in male albino outbred mice kept in a group and under the conditions of long-term social isolation. The changes in the monoaminergic systems of the left and right hemispheres of the brain after acute hypoxia with hypercapnia have been studied. The levels of dopamine (DA), serotonin (5-HT) and their metabolites – dioxyphenylacetic (DOPAC), homovanillic (HVA), and 5-hydroxyindoleacetic (5-HIAA) acids – were determined by HPLC in the cerebral cortex, hippocampus and striatum of the right and left sides of the brain. In the control mice kept both in the group and under the conditions of social isolation, a higher content of DA in the cortex of the left hemisphere has been found. In the other brain structures the monoamine content was symmetric. In the cerebral cortex of the mice in the group, acute hypoxia with hypercapnia led to a right-sided increase in the DA and 5HT levels. At the same time, the DOPAC content decreased in the left cortex. In mice in the group, under the hypoxia with hypercapnia conditions, the DA level in the left hippocampus increased. In the striatum, the content of monoamines and their metabolites did not change significantly. In animals kept for a long time under the conditions of social isolation, hypoxia with hypercapnia no statistically significant changes in the monoamines and their metabolites levels were found. It has been concluded that the preliminary maintenance under the conditions of prolonged social isolation changes the reaction of central monoaminergic systems to acute hypoxia with hypercapnia.

2018 ◽  
Vol 64 (3) ◽  
pp. 257-260 ◽  
Author(s):  
I.V. Karpova ◽  
V.V. Mikheev ◽  
V.V. Marysheva ◽  
N.A. Kuritcyna ◽  
N.A. Popkovskii ◽  
...  

Changes in the activity of monoaminergic systems of the left and right hemispheres of the brain after acute hypoxia with hypercapnia were investigated in male albino mice. The concentrations of dopamine (DA), serotonin (5-HT) and their metabolites dihydroxyphenylacetic (DOPAC), homovanilic (HVA) and 5-hydroxyindolacetic (5-HIAA) acids were measured by HPLC in the brain cortex, hippocampus and striatum of the right and the left hemispheres. In the control mice not exposed to hypoxia with hypercapnia, a higher concentration of DA in the left cortex was detected. No asymmetry in the content of other substances has been identified in the investigated structures. Acute hypoxia with hypercapnia led to the right-sided increase of DA and 5-HT levels and to the left-sided reduction DOPAC in the cerebral cortex. Under the condition of hypoxia with hypercapnia, in the hippocampus, the left-sided increase of the DA content was revealed. In the striatum the contents of monoamines and their metabolites were insignificantly changed. It has been concluded that acute hypoxia with hypercapnia causes asymmetric changes in monoaminergic systems of the archicortex and the neocortex.


2012 ◽  
Vol 10 (4) ◽  
pp. 42-48 ◽  
Author(s):  
Inessa Vladimirovna Karpova ◽  
Vladimir Vladimirovich Mikheyev ◽  
Yevgeniy Rudolfovich Bychkov ◽  
Andrey Andreyevich Lebedev ◽  
Petr Dmitriyevich Shabanov

The effects of long-term social isolation on the content and metabolism of dopamine and serotonin systems were studied in symmetrical brain structures of BALB/c male mice. With HPLC the contents of dopamine (DA), serotonin (5-HT) and their metabolites dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolacetic acid (5-HIAA) were measured in the cortex, hippocampus and striatum of both the right and the left hemispheres of the brain in mice reared in groups and social isolation. The isolated mice were characterized by reduced level of DA in the left striatum and elevated level of 5-HIAA and ratio 5-HIAA/5-HT in the right striatum. In the hippocampus of isolated mice, the activation of both DA-ergic and 5-HT-ergic systems was observed, that is the high level of DA and DOPAC in the left hippocampus and the elevated level of 5-HT in both hemispheres and of 5-HIAA in the right hippocampus were registered. On the other hand, the reduction of both DA-ergic and 5-HT-ergic systems activity was shown to be in the right hemisphere. The decreased concentration of DOPAC and ratio DOPAC/DA in the right cortex were observed as well. As to 5-HT-ergic system, the reduced level of 5-HT in the both cortex of the hemispheres as well as 5-HIAA in the right hemisphere of isolated mice was determined. The phenomenon of interhemispheric asymmetry was revealed in the hippocampus only, which was characterized by the increased DA-ergic activity in the left hippocampus but not in the striatum and the cortex.


2019 ◽  
Vol 65 (6) ◽  
pp. 485-497
Author(s):  
I.V. Karpova ◽  
V.V. Mikheev ◽  
V.V. Marysheva ◽  
N.A. Kuritcyna ◽  
E.R. Bychkov ◽  
...  

In socially isolated male outbred albino mice, the changes of monoaminergic systems under acute hypoxia with hypercapnia were studied. In cerebral cortex, hippocampus and striatum of the right and left sides of the brain, the concentrations of norepinephrine, dopamine, serotonin and their metabolites – dihydroxyphenylacetic, homovanillic and 5-hydroxyindoleacetic acids were investigated using the HPLC method. In isolated mice, which were not subjected to hypoxia with hypercapnia, higher levels of dopamine and serotonin in the left cortex were found. There was no asymmetry in monoamines and their metabolites in other studied brain structures. 10 min after the onset of exposure, acute hypoxia with hypercapnia resulted in a right-sided increase in norepinephrine levels and a decrease in dopamine levels in the striatum and serotonin levels in the hippocampus. In the cerebral cortex, 10 min after of hypoxic exposure beginning, there was a left-sided decrease in the dopamine content, while the original asymmetry found in the cortex of intact animals disappeared. In isolated mice perished of hypoxia with hypercapnia, almost all parameters returned to the control level. The exception was the ratio of serotonin metabolite level to the neurotransmitter, which in the right cortex became lower than in control animals. In white outbred mice, the brain monoaminergic systems are suggested to be relatively resistant to the negative consequences of hypoxia and hypercapnia, and corresponding shifts resulting in the reflex brain response to changes in the gas composition of the respiratory air.


2014 ◽  
Vol 60 (2) ◽  
pp. 258-263 ◽  
Author(s):  
I.V. Karpova ◽  
V.V. Mikheev ◽  
V.V. Marysheva ◽  
E.R. Bychkov ◽  
P.D. Shabanov

The changes in activity of monoaminergic systems of both the right and the left brain hemispheres of the BALB/c male mice after an acute hypoxia with hypercapnia were studied. The concentrations of dopamine, serotonin and their metabolites dihydroxyphenylacetic, homovanilic and 5-hydroxyindolacetic acids were measured by HPLC in the brain cortex, hippocampus and striatum of the right and the left hemispheres. The more high concentration of serotonin was revealed only in the cortex of the left hemisphere in control mice without hypoxia with hypercapnia. The asymmetry in dopamine level was not registered in all structures studied. Acute hypoxia with hypercapnia decreased the dopamine level in the striatum and the serotonin level both in the hippocampus and the brain cortex. The dopamine metabolites level was reduced in the striatum and in the brain cortex of hypoxed mice: both metabolites in the right brain cortex and only dihydroxyphenylacetic acid in the left brain cortex. Serotonin metabolism was decreased in all brain structures studied after hypoxia with hypercapnia in mice. Therefore, serotoninergic system of the brain is more sensitive to acute hypoxia with hypercapnia than dopaminergic system.


2017 ◽  
Vol 15 (2) ◽  
pp. 23-30
Author(s):  
Inessa V Karpova ◽  
Evgenii R Bychkov ◽  
Vera V Marysheva ◽  
Vladimir V Mikheyev ◽  
Petr D Shabanov

Objective. In the course of the study, the effect of oxytocin on the behavior and level of monoamines of the brain in aggressive male isolates of the initially low-aggressive C57Bl/6 line with similar indices of highly aggressive white outbred mice was compared. Methods. In experiments on isolated male mice of the low-aggressive C57Bl/6 line and highly aggressive white outbred mice, the effects of oxytocin on the aggressive behavior and the activity of monoaminergic systems of the left and right cerebral hemispheres was investigated. After prolonged social isolation, the male mice, who attacked in the resident-intruder test, were selected for further research. Oxytocin (5 IU/ml, 20μl) was admitrated intranasally. Control animals was treated with saline. With the HPLC-method, in the cerebral cortex, hippocampus, olfactory tubercle and striatum of the left and right sides of the brain the concentrations of dopamine, norepinephrine, serotonin and their metabolites of dioxyphenylacetic, homovaniline and 5-hydroxyindoleacetic acids were measured. Results. Among the male isolates of the C57Bl/6 line, the proportion of aggressive individuals was 56.5%, and among white outbred mice 87.5%. The investigated lines also differed in the attack latency time: aggressive C57Bl/6 mice attacked an average on the 113.1±23.5 second, while in white outbred mice the attack followed on the 35.3±14.7 second (p < 0.01). In the aggressive male isolates of the C57Bl/6 line, which received intranasally saline solution, the content of serotonin and 5-hydroxyindoleacetic acid in the hippocampus was significantly higher on the right. In C57Bl/6, oxytocin reduced the manifestation of aggression caused by prolonged social isolation (p < 0.05), but had no absolute ability to stop this type of behavior. Under its influence, the level of dopamine in the left cortex (p = 0.054), as well as serotonin content in the right hippocampus (p < 0.05) and in the left striatum (p < 0.05) decreased. In addition, the use of oxytocin in C57Bl/6 neutralized the asymmetry of serotonin and 5-hydroxyindoleacetic acid levels in the hippocampus. At the same time there was an asymmetry in the content of dopamine in the cerebral cortex with the predominance of this mediator in the right hemisphere (p < 0.05). In male isolates of highly aggressive white outbred mice, the effect of oxytocin on behavior was not found. However, in these animals oxytocin caused certain changes in monoaminergic systems of the brain. Under the action of oxytocin, the inicial right-sided asymmetry of the level of dopamine metabolites in the striatum and left-sided asymmetry in the level of serotonin in the cortex disappeared. Oxytocin caused an increase in the content of 5-hydroxyacetic acid in the right striatum (p < 0.05) and norepinephrine in the left hippocampus (p < 0.05). In addition, white outbred mice under the influence of oxytocin developed asymmetry with the predominance of norepinephrine in the right olfactory tubercle (p < 0.05). Conclusions. It can be assumed that relatively weak changes in the state of serotonergic and dopaminergic systems against the background of high reactivity of the noradrenergic system are a feature of the reaction of the brain of highly aggressive animals to oxytocin. The data obtained are discussed in terms of the lateralization of neurotransmitter systems responsible for intraspecific aggression caused by prolonged social isolation. (For citation: Karpova IV, Bychkov ER, Marysheva VV, et al. The effect of oxytocin on the level and monoamines turnover in the brain of isolated mice of high- and low-aggressive lines. Reviews on Clinical Pharmacology and Drug Therapy. 2017;15(2):23-30. doi: 10.17816/RCF15223-30).


2012 ◽  
Vol 10 (1) ◽  
pp. 51-53
Author(s):  
Vladimir Vladimirovich Mihkeev ◽  
Vera Vasilievna Marysheva ◽  
Boris Nikolaevich Bogomolov ◽  
Lubov Vladislavovna Zhukova-Williams

The effect of aminothiol antihipoxants amthizol and its analogue VM-606 on the resistance of the SHR mice males to an acute hypoxia with hypercapnia under conditions of isolated functioning of one of the hemispheres of the brain was studied. Antihypoxic agent amthizol 25 mg/kg increases life time of naïve mice by 46.2%. The drug acted on the sham-operated mice more slightly, increasing of their life only on 28.1% (p<0.01). Administration of amthizol under conditions of functioning of the right hemisphere significantly enhanced (+64.8%) the life time of mice. No antihypoxic effect was registered after administration of amthizol to mice with active left hemisphere: the result was the same as in mice without amthizol. Therefore, antihypoxic effect of amthizol was due to its action on the right (but not the left) hemisphere of the brain. VM-606 possessed more antihypoxic activity in comparison with amthizol. After unilateral cortical inactivation, VM-606 increased life time of mice both in active right and active left hemispheres, but in more degree in active right hemisphere. Thus, interhemispheric differences in resistance of mice to hypoxia with hypercapnia were diminished. Therefore, the differences between amthizol and VM-606 are the followings: amthizol inverts interhemispheric relations in hypoxia whereas VM-606 diminishes them.


2020 ◽  
Vol 168 (5) ◽  
pp. 605-609 ◽  
Author(s):  
N. A. Krupina ◽  
N. N. Khlebnikova ◽  
V. B. Narkevich ◽  
P. L. Naplekova ◽  
V. S. Kudrin

2019 ◽  
Vol 13 (2) ◽  
pp. 140-145
Author(s):  
I. V. Karpova ◽  
V. V. Mikheev ◽  
V. V. Marysheva ◽  
N. A. Kuritcyna ◽  
E. R. Bychkov ◽  
...  

2014 ◽  
Vol 5 (2) ◽  
pp. 56-64
Author(s):  
Inessa Vladimirovna Karpova ◽  
Sergey Nikolayevich Proshin ◽  
Ruslan Ivanovich Glushakov ◽  
Vladimir Vladimirovich Mikheyev ◽  
Evgeny Rudolfovich Bychkov

The Sex differenses in the content and metabolism of dopamine and serotonin were studied in symmetrical brain structures of C3H-A mice. With HPLC the contents of norepinephrine (NE), dopamine (DA), serotonin (5-HT) and their metabolites, such as dihydroxyphenylacetic acid (DOPAC), homovanillinic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA), were measured in the cortex, tuberculum olfactorium, hippocampus and striatum of both the right and the left hemispheres of the brain in male and female mice. The following sex differences in monoamines and their metabolites in brain areas were found: the NE content was higher in the male striatum and in the female tuberculum olfactorium; in males the DA content in cortex and hippocampus was higher, but in tuberculum olfactorium and striatum was lower than that in females; in females the 5-HT and 5-HIAA levels in hippocampus and tuberculum olfactorium were hither than that in males. In the female left striatum the 5-HIAA content was higher than in males. In males three cases of neurochemical cerebral hemisphere asymmetries were found: 1) the NE content is higher in the right tuberculum olfactorium, 2) the DA level is higher in the right hippocampus, 3) the 5-HIAA content is higher in the left hippocampus. In females the only one case of cerebral asymmetry was found, i. g. the 5-HT level was higher in the right tuberculum olfactorium.


Author(s):  
Vanessa Kogel ◽  
Stefanie Trinh ◽  
Natalie Gasterich ◽  
Cordian Beyer ◽  
Jochen Seitz

AbstractAstrocytes are the most abundant cell type in the brain and crucial to ensure the metabolic supply of neurons and their synapse formation. Overnutrition as present in patients suffering from obesity causes astrogliosis in the hypothalamus. Other diseases accompanied by malnutrition appear to have an impact on the brain and astrocyte function. In the eating disorder anorexia nervosa (AN), patients suffer from undernutrition and develop volume reductions of the cerebral cortex, associated with reduced astrocyte proliferation and cell count. Although an effect on astrocytes and their function has already been shown for overnutrition, their role in long-term undernutrition remains unclear. The present study used primary rat cerebral cortex astrocytes to investigate their response to chronic glucose starvation. Cells were grown with a medium containing a reduced glucose concentration (2 mM) for 15 days. Long-term glucose starvation increased the expression of a subset of pro-inflammatory genes and shifted the primary astrocyte population to the pro-inflammatory A1-like phenotype. Moreover, genes encoding for proteins involved in the unfolded protein response were elevated. Our findings demonstrate that astrocytes under chronic glucose starvation respond with an inflammatory reaction. With respect to the multiple functions of astrocytes, an association between elevated inflammatory responses due to chronic starvation and alterations found in the brain of patients suffering from undernutrition seems possible.


Sign in / Sign up

Export Citation Format

Share Document