scholarly journals Reference Path Generation and Obstacle Avoidance for Autonomous Vehicles Based on Waypoints, Dubins Curves and Virtual Force Field Method

Author(s):  
Gokhan Bayar
2007 ◽  
Author(s):  
Saurabh Sarkar ◽  
Scott Reynolds ◽  
Ernest Hall

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Girish Balasubramanian ◽  
Senthil Arumugam Muthukumaraswamy ◽  
Xianwen Kong

AbstractObstacle avoidance is a major hurdle when implementing mobile robots and swarm robots. Swarm robots work in groups and therefore require an efficient and functional obstacle avoidance algorithm to stay collision free between themselves and their surroundings. This paper reviews previous research in obstacle avoidance implementation using the force field method (FFM), also known as potential field method (PFM) and a neutral network approach. Moreover, this paper aims to execute simulations using a modified force field algorithm and a neural network approach and compare them. The obtained results are analyzed to identify the performance characteristics and the time taken to perform tasks using a singular mobile robot against a swarm robot environment consisting of four and ten robots, respectively, in both simulation cases. Simulations showed that the algorithm was successful in navigating obstacles for both single and swarm robot environments. A single robot was found to take up to 340% longer to arrive at the required location compared to the first robot in the experiment. Moreover, it was found that the neural network approach showed ~ 27% improvement over the modified force field algorithm when it comes to cases where more than four robots are being used.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2244
Author(s):  
S. M. Yang ◽  
Y. A. Lin

Safe path planning for obstacle avoidance in autonomous vehicles has been developed. Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating path pruning, smoothing, and optimization with geometric collision detection is shown to improve planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the redundant points generated by the random trees for a new path, without colliding with the obstacles. Path smoothing is performed to modify the path so that it becomes continuously differentiable with curvature implementable by the vehicle. Optimization is performed to select a “near”-optimal path of the shortest distance among the feasible paths for motion efficiency. In the experimental verification, both a pure pursuit steering controller and a proportional–integral speed controller are applied to keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It is shown that the vehicle can successfully track the path efficiently and reach the destination safely, with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also applied to lane changes, and the average deviation from the lane during and after lane changes remains within 8.3% of the vehicle width.


Sign in / Sign up

Export Citation Format

Share Document