Effects of Simulated Microgravity and UVB on YAP Levels and Expression in Mesenchymal Stem Cells

Author(s):  
Kali Jai Woods

The Final Frontier conjures dreams of exploring the great expanse of our solar system, but there is an inherent problem to this vision as space travel negatively impacts the musculoskeletal system. The focus of my research was to study the detrimental effects of radiation and microgravity, two components of space travel, on mesenchymal stem cells through the lens of the yes-associated protein (YAP). Chapter One, discusses our motivation and the goals of our experiments while Chapter Two provides extensive background on the cell type chosen, the known impacts of radiation and microgravity, our model compared with the actual conditions astronauts experience, and a discussion of YAP with its associated pathways. Chapter Three is the manuscript and supplemental, Chapter Four is the conclusion and finally Chapter Five which details some of the other work that I contributed to while at Boise State University.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Muthukumar Gunasekaran ◽  
Rachana Mishra ◽  
Progyaparamita Saha ◽  
Xuebin Fu ◽  
Mohamed Abdullah ◽  
...  

Stem cells transplantation is being explored as an effective therapy for heart diseases. However, majority of stem cell therapies for adult patients with myocardial infarction (MI) had mixed and inconsistent results implying chronological age may influence the effectiveness of regenerative therapies. Therefore, herein, we performed a head-to-head comparison between different, well-studied stem cell types to identify the superior regenerative cell type using rodent MI model.After our standard characterization for each stem cell type (FACS for cell surface markers), 1 million neonatal Cardiac Mesenchymal Stem cells (nMSCs), adult MSCs (aMSCs), adult derived cardiosphere derived cells (aCDCs), umbilical cord derived cells (UCBCs), Bone Marrow derived Mesenchymal Stem cells (BM-MSCs), or cell-free Iscove Modified Dulbecco Medium (IMDM as placebo control) were injected into athymic rat myocardial infarct model. Although all the tested groups significantly improved ejection fraction, nMSCs outperformed other stem cells in cardiac functional recovery. Additionally, nMSCs also showed significant increased cardiac functional recovery compared to aMSCs in wild type rat MI model. Mason trichrome staining with heart sections revealed that decreased fibrosis was evident on nMSCs injection compared to aMSCs in both athymic and wild type rat MI model. Myocardial sections from rats received nMSCs showed significantly reduced M1 macrophages (inflammatory) and increased M2 macrophages (anti-inflammatory) compared with sections from rats having received aMSCs and IMDM control. Pro and anti-inflammatory cytokines analyzed on sera collected on day 2 and 7 revealed that anti-inflammatory cytokine (IL10) was significantly increased and inflammatory cytokines (IL4 and IL12) reduced in nMSCs compared to aMSCs transplanted MI rat model.In conclusion, nMSCs demonstrated superior functional abilities, reduced fibrosis, inflammatory cells and cytokines compared to all the other cell types and with aMSCs demonstrating that nMSCs is an ideal stem cell type for therapeutic application in myocardial infarction.


2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Kun Zhu ◽  
Rui Zhao ◽  
Yuchen Ye ◽  
Gang Xu ◽  
Changchun Zhang

Abstract Background Intervertebral disc degeneration (IDD) is a natural progression of age-related processes. Associated with IDD, degenerative disc disease (DDD) is a pathologic condition implicated as a major cause of chronic lower back pain, which can have a severe impact on the quality of life of patients. As degeneration progression is associated with elevated levels of inflammatory cytokines, enhanced aggrecan and collagen degradation, and changes in the disc cell phenotype. The purpose of this study was to investigate the biological and cytological characteristics of rabbit nucleus pulposus mesenchymal stem cells (NPMSCs)—a key factor in IDD—and to determine the effect of the growth and differentiation factor-5 (GDF5) on the differentiation of rabbit NPMSCs transduced with a lentivirus vector. Methods An in vitro culture model of rabbit NPMSCs was established and NPMSCs were identified by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR). Subsequently, NPMSCs were randomly divided into three groups: a transfection group (the lentiviral vector carrying GDF5 gene used to transfect NPMSCs); a control virus group (the NPMSCs transfected with an ordinary lentiviral vector); and a normal group (the NPMSCs alone). FCM, qRT-PCR, and western blot (WB) were used to detect the changes in NPMSCs. Results The GDF5-transfected NPMSCs displayed an elongated shape, with decreased cell density, and significantly increased GDF5 positivity rate in the transfected group compared to the other two groups (P < 0.01). The mRNA levels of Krt8, Krt18, and Krt19 in the transfected group were significantly higher in comparison with the other two groups (P < 0.01), and the WB results were consistent with that of qRT-PCR. Conclusions GDF5 could induce the differentiation of NPMSCs. The lentiviral vector carrying the GDF5 gene could be integrated into the chromosome genome of NPMSCs and promoted differentiation of NPMSCs into nucleus pulposus cells. Our findings advance the development of feasible and effective therapies for IDD.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Matthew Thompson ◽  
Kali Woods ◽  
Joshua Newberg ◽  
Julia Thom Oxford ◽  
Gunes Uzer

AbstractReducing the musculoskeletal deterioration that astronauts experience in microgravity requires countermeasures that can improve the effectiveness of otherwise rigorous and time-expensive exercise regimens in space. The ability of low-intensity vibrations (LIV) to activate force-responsive signaling pathways in cells suggests LIV as a potential countermeasure to improve cell responsiveness to subsequent mechanical challenge. Mechanoresponse of mesenchymal stem cells (MSC), which maintain bone-making osteoblasts, is in part controlled by the “mechanotransducer” protein YAP (Yes-associated protein), which is shuttled into the nucleus in response to cyto-mechanical forces. Here, using YAP nuclear shuttling as a measurement outcome, we tested the effect of 72 h of clinostat-induced simulated microgravity (SMG) and daily LIV application (LIVDT) on the YAP nuclear entry driven by either acute LIV (LIVAT) or Lysophosphohaditic acid (LPA), applied after the 72 h period. We hypothesized that SMG-induced impairment of acute YAP nuclear entry would be alleviated by the daily application of LIVDT. Results showed that while both acute LIVAT and LPA treatments increased nuclear YAP entry by 50 and 87% over the basal levels in SMG-treated MSCs, nuclear YAP levels of all SMG groups were significantly lower than non-SMG controls. LIVDT, applied in parallel to SMG, restored the SMG-driven decrease in basal nuclear YAP to control levels as well as increased the LPA-induced but not LIVAT-induced YAP nuclear entry over SMG only, counterparts. These cell-level observations suggest that daily LIV treatments are a feasible countermeasure for restoring basal nuclear YAP levels and increasing the YAP nuclear shuttling in MSCs under SMG.


Soft Matter ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 57-67
Author(s):  
Haniyeh Najafi ◽  
Ali Mohammad Tamaddon ◽  
Samira Abolmaali ◽  
Sedigheh Borandeh ◽  
Negar Azarpira

A shear-thinning Fmoc-phenylalanine-valine hydrogel exhibits cell type-dependent proliferative activity.


Cells ◽  
2012 ◽  
Vol 1 (4) ◽  
pp. 1045-1060 ◽  
Author(s):  
Shohei Wakao ◽  
Yasumasa Kuroda ◽  
Fumitaka Ogura ◽  
Taeko Shigemoto ◽  
Mari Dezawa

2017 ◽  
Vol 3 (1) ◽  
Author(s):  
William M. Weiss ◽  
Aillette Mulet-Sierra ◽  
Melanie Kunze ◽  
Nadr M. Jomha ◽  
Adetola B. Adesida

Sign in / Sign up

Export Citation Format

Share Document