scholarly journals Root and crop growth of oats as affected by the length of periods of high water-table.

1980 ◽  
Vol 28 (1) ◽  
pp. 20-28
Author(s):  
J.J. Schuurman

The influence of the duration of a high water-table on root and shoot growth of oats in an early growth stage was studied. Root wt., depth of rooting and number of nodal roots with a length of < 10 cm reacted favourably on a low water-table. In this experiment shoot growth, however, hardly reacted to better root growth. This meant that the plants with restricted root growth could absorb water and nutrients as well as those with larger root systems. The fertilization of the top 0-25 cm of soil could have been an important factor in this report. (Abstract retrieved from CAB Abstracts by CABI’s permission)

2016 ◽  
Vol 47 (S1) ◽  
pp. 293-312 ◽  
Author(s):  
Xiuli Xu ◽  
Qi Zhang ◽  
Yunliang Li ◽  
Xianghu Li

Groundwater plays an important role in supplying water to vegetation in floodplain wetlands. Exploring the effect of water table depth (WTD) on vegetation transpiration is essential to increasing understanding of interactions among vegetation, soil water, and groundwater. In this study, a HYDRUS-1D model was used to simulate the water uptake of two typical vegetation communities, Artemisia capillaris and Phragmites australis, in a floodplain wetland (Poyang Lake wetland, China). Vegetation transpiration was compared for two distinct hydrological conditions: high water table (2012) and low water table (2013). Results showed that vegetation transpiration in the main growth stage (July–October) was significantly influenced by WTD. Under high water table conditions, transpiration of A. capillaris and P. australis communities in the main growth stage totaled 334 and 735 mm, respectively, accounting for over 90% of the potential transpiration. Under low water table conditions, they decreased to 203 and 510 mm, respectively, due to water stress, accounting for merely 55% of the potential transpiration. Scenario simulations found different linear relationships between WTD and the ratio of groundwater contribution to vegetation transpiration. An increase of 1 m in WTD in the main growth stage may reduce the ratio by approximately 25%.


1971 ◽  
Vol 61 (3) ◽  
pp. 579-590 ◽  
Author(s):  
William Enkeboll

abstract Soil and water conditions had an effect on the degree of damage to structures. Most structures were located on alluvium with a high water table. Settlements occurred in dike and causeway fill in Chimbote harbor. Severe problems to communication occurred in some areas through embankment failures and road slides.


1995 ◽  
Vol 120 (2) ◽  
pp. 211-216 ◽  
Author(s):  
J. Roger Harris ◽  
Nina L. Bassuk ◽  
Richard W. Zobel ◽  
Thomas H. Whitlow

The objectives of this study were to determine root and shoot growth periodicity for established Fraxinus pennsylvanica Marsh. (green ash), Quercus coccinea Muenchh. (scarlet oak), Corylus colurna L. (Turkish hazelnut), and Syringa reticulata (Blume) Hara `Ivory Silk' (tree lilac) trees and to evaluate three methods of root growth periodicity measurement. Two methods were evaluated using a rhizotron. One method measured the extension rate (RE) ofindividual roots, and the second method measured change in root length (RL) against an observation grid. A third method, using periodic counts of new roots present on minirhizotrons (MR), was also evaluated. RE showed the least variability among individual trees. Shoot growth began before or simultaneously with the beginning of root growth for all species with all root growth measurement methods. All species had concurrent shoot and root growth, and no distinct alternating growth patterns were evident when root growth was measured by RE. Alternating root and shoot growth was evident, however, when root growth was measured by RL and MR. RE measured extension rate of larger diameter lateral roots, RL measured increase in root length of all diameter lateral roots and MR measured new root count of all sizes of lateral and vertical roots. Root growth periodicity patterns differed with the measurement method and the types of roots measured.


1991 ◽  
Vol 34 (6) ◽  
pp. 2445-2452
Author(s):  
C. R. Camp ◽  
M. L. Robbins ◽  
D. L. Karlen ◽  
R. E. Sojka

Weed Science ◽  
1981 ◽  
Vol 29 (6) ◽  
pp. 697-703 ◽  
Author(s):  
Michael Barrett ◽  
Floyd M. Ashton

Napropamide [2-(α-napthoxy)-N,N-diethylpropionamide] inhibited root and shoot growth in corn (Zea maysL. ‘NC+ 59’) and tomato (Lycopersicon esculentumMill. ‘Niagara VF315’) seedlings. Shoot growth was reduced less than root growth in both species. Corn roots were approximately 10 times more sensitive to napropamide than were tomato roots. Translocation of napropamide from the roots to the shoot of tomato occurred within 0.5 h and followed an apoplastic pattern. Little movement of napropamide from the roots to the shoots occurred in corn. Metabolism of napropamide was not evident in either species during an 8-h exposure. Absorption studies showed that total napropamide levels were 60% higher in corn root tissue than in tomato root tissue. The greater napropamide content in the corn roots was associated with a tightly bound fraction of the total napropamide influx.


1989 ◽  
Vol 16 (5) ◽  
pp. 615-626 ◽  
Author(s):  
M. D. Haug ◽  
D. J. L. Forgie ◽  
S. L. Barbour

This paper presents the design concept for a case study sanitary landfill on a site that would not normally have been approved owing to the presence of a high water table. In this design, the base of the landfill was intentionally placed below the water table. A massive 2.5 m wide, 2.5 m high cutoff wall and a 0.3 m thick liner with hydraulic conductivities of approximately 5 × 10−10 m/s were constructed of recompacted glacial till to limit both groundwater intrusion into the landfill and leachate migration out of the landfill. In this case study, the landfill base was placed below the water table to (i) provide a relatively inexpensive source of cover material and (ii) use the hydrodynamic gradient from the high water table to help contain the leachate. Finite element modelling of the seepage and contaminant transport, for alternate designs for lined and unlined landfills placed above and below the groundwater table, is shown to confirm a previous, less-sophisticated, estimation that placing a lined landfill below the groundwater table has definite advantages in reducing both leachate seepage and contaminant transport. Key words: landfill, leachate, hydrodynamic containment, liners, compacted earth cutoff walls, seepage and contaminant transport modelling.


1979 ◽  
Vol 20 (6) ◽  
pp. 493-505 ◽  
Author(s):  
R.P. Tripathi ◽  
B.P. Ghildyal

1984 ◽  
Vol 14 (5) ◽  
pp. 644-651 ◽  
Author(s):  
A. N. Burdett ◽  
L. J. Herring ◽  
C. F. Thompson

Observations were made on the growth of white spruce (Piceaglauca (Moench) Voss) and Engelmann spruce (P. engelmanni Parry), each planted at a single location in the interior of British Columbia. In both species bareroot stock (either 2 + 0 seedlings or 2 + 1 transplants) with a low root growth capacity made only limited height growth during the first two seasons after planting. In the first season, many short stem units were formed, whereas in the second season, stem units were much longer but many fewer. The length of needles formed after planting by the bareroot trees was, in the first season, only about half that of needles formed the previous year in the nursery. Needle length increased slightly in the 2nd year. Container-grown trees (1 + 0 seedlings from 336-mL containers), which had a high root growth capacity, made relatively good height growth in the first season when they formed long needles and stem units. Height growth by these seedlings was much less in the second season, however, as were needle length and stem unit number, but not stem unit length. Application of slow release N,P, and K fertilizer at planting improved shoot growth by bareroot trees more in the second season than the first. In contrast, the container-grown stock made a large shoot growth response to fertilization in both the first and the second seasons. The results are consistent with the hypothesis that, as root establishment proceeds, shoot growth tends to be limited by the supply, first of water, then of mineral nutrients. This implies that the early growth of planted spruce can be maximized by using stock with a high root growth capacity, or other adaptations to drought, and applying slow release fertilizer at planting. Observations on the white spruce revealed an acceleration in shoot growth by both stock types during the third season. This followed the establishment, by the end of the second season, of root systems several metres in diameter. A large difference in height: diameter ratio, observed at the time of planting, between the container-grown and bareroot white spruce disappeared entirely in the course of the first three growing seasons.


Sign in / Sign up

Export Citation Format

Share Document