scholarly journals Fine Root Growth of Black Spruce Trees and Understory Plants in a Permafrost Forest Along a North-Facing Slope in Interior Alaska

2021 ◽  
Vol 12 ◽  
Author(s):  
Kyotaro Noguchi ◽  
Yojiro Matsuura ◽  
Tomoaki Morishita ◽  
Jumpei Toriyama ◽  
Yongwon Kim

Permafrost forests play an important role in the global carbon budget due to the huge amounts of carbon stored below ground in these ecosystems. Although fine roots are considered to be a major pathway of belowground carbon flux, separate contributions of overstory trees and understory shrubs to fine root dynamics in these forests have not been specifically characterized in relation to permafrost conditions, such as active layer thickness. In this study, we investigated fine root growth and morphology of trees and understory shrubs using ingrowth cores with two types of moss substrates (feather- and Sphagnum mosses) in permafrost black spruce (Picea mariana) stands along a north-facing slope in Interior Alaska, where active layer thickness varied substantially. Aboveground biomass, litterfall production rate, and fine root mass were also examined. Results showed that aboveground biomass, fine root mass, and fine root growth of black spruce trees tended to decrease downslope, whereas those of understory Ericaceae shrubs increased. Belowground allocation (e.g., ratio of fine root growth/leaf litter production) increased downslope in both of black spruce and understory plants. These results suggested that, at a lower slope, belowground resource availability was lower than at upper slope, but higher light availability under open canopy seemed to benefit the growth of the understory shrubs. On the other hand, understory shrubs were more responsive to the moss substrates than black spruce, in which Sphagnum moss substrates increased fine root growth of the shrubs as compared with feather moss substrates, whereas the effect was unclear for black spruce. This is probably due to higher moisture contents in Sphagnum moss substrates, which benefited the growth of small diameter (high specific root length) fine roots of understory shrubs. Hence, the contribution of understory shrubs to fine root growth was greater at lower slope than at upper slope, or in Sphagnum than in feather-moss substrates in our study site. Taken together, our data show that fine roots of Ericaceae shrubs are a key component in belowground carbon flux at permafrost black spruce forests with shallow active layer and/or with Sphagnum dominated forest floor.

2020 ◽  
Vol 33 (2) ◽  
pp. 458-469
Author(s):  
EUNICE MAIA DE ANDRADE ◽  
GILBERTO QUEVEDO ROSA ◽  
ALDENIA MENDES MASCENA DE ALMEIDA ◽  
ANTONIO GIVANILSON RODRIGUES DA SILVA ◽  
MARIA GINA TORRES SENA

ABSTRACT Seasonally dry tropical forests (SDTF) usually present dry seasons of eight or more months. Considering the concerns about the resilience of SDTF to climate changes, the objective of this study was to evaluate the effect of the rainfall regime on fine root growth in a SDTF. The experiment started at the end of the wet season (July 2015), when fine roots were evaluated and ingrowth cores were implemented. The temporal growth of fine roots in the 0-30 cm soil layer was monitored, considering the 0-10, 10-20, and 20-30 cm sublayers, through six samplings from November 2015 to July 2017. The characteristics evaluated were fine root biomass, fine root length, fine root specific length, and fine root mean diameter. The significances of the root growths over time and space were tested by the Kruskal-Wallis test (p<0.05). Fine roots (Ø<2 mm) were separated and dried in an oven (65 °C) until constant weight. The root length was determined using the Giaroots software. The fine root biomass in July 2015 was 7.7±5.0 Mg ha-1 and the length was 5.0±3.2 km m-2. Fine root growth in SDTF is strongly limited by dry periods, occurring decreases in biomass and length of fine roots in all layers evaluated. Fine root growth occurs predominantly in rainy seasons, with fast response of the root system to rainfall events, mainly in root length.


2008 ◽  
Vol 54 (No. 5) ◽  
pp. 212-215
Author(s):  
M. Skrziszowski ◽  
I. Kupka

The study analyses the growth of beech seedling fine roots and their development in the first five years. The research plots were established in 1997–2003 in community forests of Starý Plzenec (Western Bohemia, Czech Republic). The data are based on annual reviews of beech samplings extracted from surveyed plots. The whole root volume as well as the fine root volume is significantly (on a 95% significance level) growing during the first years after outplanting and there is not any disruption of growth immediately after outplanting.


1996 ◽  
Vol 26 (12) ◽  
pp. 2153-2159 ◽  
Author(s):  
J. Bauhus ◽  
N. Bartsch

The purpose of the study was to investigate fine-root growth in gaps created for beech (Fagussylvatica L.) regeneration. Fine-root growth was measured using the ingrowth core technique. Measurements were carried out in gaps 30 m in diameter, which were either untreated or treated with lime, and in a mature beech stand. Ingrowth core experiments showed that growth of beech fine roots in gap centres was negligible during the 2nd and 3rd year after gap creation, indicating that although fine roots from stumps stayed alive long after trees were cut, they did not grow. It also indicated that trees surrounding gaps did not effectively grow fine roots that reached 10 m into the gap centre. At the edge of unlimed gaps (5 m away from the stems), fine-root growth was one-third that of the mature stand. In the stand the amount of live fine roots in ingrowth cores (390 g•m−2) had attained the standing crop level after 16 months. In limed gaps, where herbaceous vegetation had established, herbaceous root growth was 800–970 g•m−2 after 16 months. Neither fine-root growth nor aboveground biomass of herbaceous plants was substantial in untreated gaps. The slow recovery of biomass production in unlimed gaps showed that the resistance of this beech forest to nutrient losses following disturbance is low.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1007E-1007
Author(s):  
Kuo-Tan Li ◽  
Jim Syvertsen ◽  
Jackie Burns

Mechanical harvesting using trunk shakers on late-season `Valencia' sweet orange [Citrus sinensis (L.) Osb.] trees can remove young fruit for the next crop and occasionally cause root exposure or severe bark scuffing on the trunk. To evaluate the effects of these physical injuries on fine root growth and lifespan, we installed minirhizotrons in the root zone of 15-year-old fruiting `Valencia' trees on Swingle citrumelo [C. paradise Macf. × Poncirus trifoliate (L.) Raf.] rootstocks. Images of roots against the minirhizotron tubes were captured biweekly with a custom-made video-DVD recorder system. Trees were harvested in early June by hand or with a linear-type trunk shaker in two consecutive years. Bark injury after trunk shaking was mimicked by removing part (42%) of the bark tissue from the main trunk with a sharp knife. Numbers of fine roots, root activity and lifespan as indexed by the color of the root, and the distribution of new fine roots after harvest were analyzed. Although root exposure was common with the normal operations during mechanical harvesting, few disturbances reached the major fine root zone. There was no clear correlation between root growth and trunk shaking with or without bark injury. The root system might benefit from less competition after the loss of young fruit from mechanical harvesting, as a greater availability of carbohydrates or other resources may compensate for any potential damage due to mechanical harvesting.


Rhizosphere ◽  
2021 ◽  
pp. 100415
Author(s):  
Wanderlei Bieluczyk ◽  
Marisa de Cássia Piccolo ◽  
Marcos Gervasio Pereira ◽  
George Rodrigues Lambais ◽  
Moacir Tuzzin de Moraes ◽  
...  

1998 ◽  
Vol 78 (1) ◽  
pp. 163-169 ◽  
Author(s):  
J. S. Bhatti ◽  
N. W. Foster ◽  
P. W. Hazlett

Vertical distribution of fine root biomass and nutrient content was examined within a black spruce (Picea mariana) stand growing on a boreal peat soil in northeastern Ontario. The influence of site physical and chemical properties on fine root biomass production was assessed. More then 80% of the fine roots were present in moss plus the top 10 cm of peat where nutrients and aeration are most favourable. The fine root biomass (W/V) was significantly higher with alder (5.9 kg m−3) (Alnus rugosa) as understory vegetation compared to non-alder locations (2.9 kg m−3). Total nutrient content in fine roots was 54, 3.2, 5.4, 63 and 5.7 kg ha−1 on the alder site and 20, 1.4, 2.3, 28 and 4.2 kg ha−1 of N, P, K, Ca, and Mg on the non-alder site, respectively. The mass (W/V) of nutrients in fine roots was strongly dependent upon the availability of nutrients in the peat. Fine root content had a strong positive relationship with peat available P and exchangeable K contents suggesting that P and K may be limiting nutrients for black spruce in this peat soil. Key words: Nitrogen, phosphorus, potassium, boreal peatlands, aeration, water table


2009 ◽  
Vol 27 (4) ◽  
pp. 229-233 ◽  
Author(s):  
Gary W. Watson

Abstract Exposed fine roots are subject to desiccation, which may affect their survival as well as new root growth following bare root transplanting. Fine roots of dormant 1-year-old green ash (Fraxinus pennsylvanica) and sugar maple (Acer saccharum) seedlings, subjected to desiccation treatments of 0, 1, 2, or 3 hours in December and March, lost up to 82 percent of their water. Root electrolyte leakage, a measure of cell damage, tripled after three hours of desiccation. The increase was moderately, but significantly, greater in March for both species. Desiccation treatments had no effect on fine root survival. Growth of new roots (RGP) was also unaffected by desiccation treatments. RGP of maple was greater in March than December, but not ash.


Author(s):  
Bengt Torssell ◽  
Henrik Eckersten ◽  
Anneli Lundkvist ◽  
Theo Verwijst

2007 ◽  
Vol 246 (2-3) ◽  
pp. 186-195 ◽  
Author(s):  
Sergio Luis de Miranda Mello ◽  
José Leonardo de Moraes Gonçalves ◽  
José Luiz Gava

Sign in / Sign up

Export Citation Format

Share Document