scholarly journals Synthesis of an Improved Fast Terminal Sliding Mode Controller for Opto-Electronic Observatory in Mobile Vehicle

Author(s):  
Huy Quốc Vũ ◽  
◽  
Bình Ngọc Trần

The paper presents a method of synthesizing the Variable Structure Controller (VSC) based on the Fast Terminal Sliding Mode (FTSM) control for an optoelectronic observatory to eliminate the effects of the vibration and the change of vehicle’s direction. An improved fast terminal sliding surface and a fuzzy saturation function have been proposed to develop the improved fast terminal sliding mode variable structure controller (IFTSM-VSC). Based on the theory of Lyapunov stability, the article has proved that the IFTSM-VSC controller ensures the Line of Sight (LOS) stabilization of the observation devices and ensures the tracking errors converge to zero in finite time. The simulation uses data about the vibration and navigation of the vehicle recorded on some streets and roads. Simulation results in Matlab/Simulink show the effectiveness of the IFTSM-VSC controller.

2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Juntao Fei ◽  
Zhe Wang ◽  
Xiao Liang

In this paper, a robust adaptive fractional fast terminal sliding mode controller is introduced into the microgyroscope for accurate trajectory tracking control. A new fast terminal switching manifold is defined to ensure fast finite convergence of the system states, where a fractional-order differentiation term emerges into terminal sliding surface, which additionally generates an extra degree of freedom and leads to better performance. Adaptive algorithm is applied to estimate the damping and stiffness coefficients, angular velocity, and the upper bound of the lumped nonlinearities. Numerical simulations are presented to exhibit the validity of the proposed method, and the comparison with the other two methods illustrates its superiority.


2014 ◽  
Vol 687-691 ◽  
pp. 487-491
Author(s):  
Hui Zhao ◽  
Ya Fei Wang ◽  
Hong Jun Wang

In order to improve the stability of steam turbine under large disturbance, the controller of cement waste heat power generation valve was designed by using exponential terminal sliding mode variable structure control method. In this paper, taking a single machine infinite bus power system as an example, established mathematical model of waste heat generator valve system, and designed the valve controller of synchronous generator based on the exponential terminal sliding mode variable structure control theory. Then, valve control simulation model was set up and simulation experiment was performed by MATLAB. Finally, verify the effectiveness of the scheme by comparison analysis. Simulation results show that the controller can effectively improve the transient stability of power system and the dynamic quality.


2012 ◽  
Vol 605-607 ◽  
pp. 1639-1642
Author(s):  
Ding Ma

Considering the Duffing chaotic system, the problem of stability control based on the terminal sliding mode variable structure is studied. A new terminal sliding mode surface and control law are designed. On this basis, the stability of closed-loop system is analyzed. Simulation results show the effectiveness of the control method.


2019 ◽  
Vol 16 (8) ◽  
pp. 3141-3153 ◽  
Author(s):  
Elham Ramezani ◽  
Seyyed Mohammad Hosseini Rostami

The automatic pilot flight control system is undoubtedly one of the most important parts of the flying vehicle that provide stability and to operate appropriately in the guidance section. Considering to nonlinear, dynamic and time-varying system, structural and parametric uncertainties of the flying vehicles, in flight control, varietal control approach have to achieve stability, proper operation as well as decreasing effect of uncertainties and modeling errors. In this paper, designing of the longitudinal flying vehicles autopilot a Fast Terminal Sliding Mode Control (FTSMC). Variable structure systems because of the robustness effect on uncertainty and the effects on disturbances which a contributor to widespread efficiency. One of the methods for controlling the variable structure is a sliding mode, which is one of the nonlinear controllers that can control the system in the structured uncertainties and unstructured uncertainties. Additionally, in the method of classic sliding Mode Control is got convergence of states equilibrium point by an asymptotic curve. While proportional Integral Sliding Mode Control has the convergence of states to the equilibrium point in finite time. One of the issues is that finite time cannot determine the time of convergence when the state turn initial position to a final position. The proposed method is based on the Lyapunov stability theory and has guaranteed stability of the control system. The controller is robust to external disturbances and unmodified dynamics. Three types of controllers which are multi-input-multi-output (MIMO) system with random uncertainty are designed. Furthermore, the classic sliding mode controller, the proportional-integral sliding mode controller as well as the integral terminal sliding mode controller are reviewed. A glance at the results simulates shows an improved in the proposed method. Simulations are done using MATLAB software.


2014 ◽  
Vol 494-495 ◽  
pp. 1195-1201
Author(s):  
Bo Yang ◽  
Jun Miao ◽  
Yong Yang

This paper presents an attitude control method based on electric propulsion systems for the lunar lander that considers the important characteristics of nonlinearity and uncertainty of lunar soft landing maneuvers with large attitudes. The attitude control law is designed according to the terminal sliding mode variable structure control method. A soft lunar landing utilizing the proposed control method is simulated, and the results show that this attitude control system demonstrates superior global robustness, consumes less propellant, and can achieve higher precision than a conventional chemical propulsion-based control system. For a lunar lander with a pulse plasma thruster as the propulsion system, the attitude control precision of the system is 0.002 degrees when the attitude control force is 0.1 Newtons. When a conventional chemical, not electric, propulsion thruster is used, if the attitude control force decreases by one order of magnitude, then the control precision of the lunar lander decreases 10-fold. This study demonstrates that a terminal sliding mode variable structure control method combined with low level thrust electric propulsion can improve the precision of lunar soft landings.


Sign in / Sign up

Export Citation Format

Share Document