Analysis of Dynamic Characteristics of a Propeller Blade Subjected to Large Material Removal in Milling
A propeller blade, as a typical example of low-rigidity components, is prone to chatter and deformation in machining process, especially when large material removal is applied. In order to foresee the problems and then optimize the process, identification of the dynamic behavior of the workpiece is of great importance. This paper studies the dynamic characteristics of the workpiece in the machining process from plate to propeller blade using Finite Element Method. The results show that the time-varying natural frequencies of the workpiece decrease gradually at the beginning steps of the process due to the influence of material removal, and increases afterwards influenced by the geometry of the blade.