scholarly journals Sentiment Analysis System for Myanmar News using K Nearest Neighbor and Naïve Bayes

Author(s):  
Ardianne Luthfika Fairuz ◽  
Rima Dias Ramadhani ◽  
Nia Annisa Ferani Tanjung

Akhir tahun 2019 lalu dunia digemparkan oleh munculnya suatu penyakit yang disebabkan oleh virus SARS-CoV-2 yang merupakan jenis virus terbaru dari coronavirus. Penyakit ini dikenal dengan nama COVID-19. Penyebaran penyakit ini terbilang cukup luas dan cepat. Dalam waktu singkat penyakit ini mulai menyebar ke segala penjuru dunia tak terkecuali Indonesia. Dengan tingkat penyebaran yang begitu tinggi dan belum ditemukannya vaksin untuk COVID-19, menyebabkan kekacauan di tengah masyarakat. Hal ini mempengaruhi banyak sektor kehidupan masyarakat. Tak sedikit masyarakat yang aktif bersosial media dan menuliskan pendapat, opini serta pemikirannya di platform media sosial seperti Twitter. Terjadinya pandemi ini mendorong masyarakat untuk menuliskan opini, pemikiran serta pendapatnya terhadap COVID-19 pada media sosial Twitter. Dibutuhkan suatu model sentiment analysis untuk mengklasifikasi tweet masyarakat di Twitter menjadi positif dan negatif. Sentiment analysis merupakan bagian dari Natural Language Processing yang membuat sebuah sistem guna mengenali serta mengekstraksi opini dalam  bentuk teks. Pada penelitian ini digunakan algoritma Naive Bayes dan K-Nearest Neighbor untuk digunakan dalam membangun model sentiment analysis terhadap tweet pengguna Twitter terhadap COVID-19. Didapatkan akurasi sebesar 85% untuk algoritma Naïve Bayes dan 82% untuk algoritma K-Nearest Neighbor pada nilai k=6, 8, dan 14.


2020 ◽  
Vol 9 (2) ◽  
pp. 259
Author(s):  
Gede Putra Aditya Brahmantha ◽  
I Wayan Santiyasa

In addition to communicating, Social Media is a place to issue opinions by the public on many things that are currently taking place, Twitter is one of these social medias that is widely used in conveying opinions regardless of whether these opinions are negative, positive, or even neutral. Tweets data about the Enforcement of PSBB Part II in Jakarta were obtained as many as 200 opinions using web crawling then advanced to the preprocessing stage before being classified using the K-Nearest Neighbor and Multinomial Naive Bayes algorithms. In 3 tests, the highest accuracy was 65.00% for K-Nearest Neighbor and the highest accuracy was 85.00% for Multinomial Naive Bayes method.


Author(s):  
Kadda Zerrouki ◽  
Reda Mohamed Hamou ◽  
Abdellatif Rahmoun

Making use of social media for analyzing the perceptions of the masses over a product, event, or a person has gained momentum in recent times. Out of a wide array of social networks, the authors chose Twitter for their analysis as the opinions expressed there are concise and bear a distinctive polarity. Sentiment analysis is an approach to analyze data and retrieve sentiment that it embodies. The paper elaborately discusses three supervised machine learning algorithms—naïve bayes, k-nearest neighbor (KNN), and decision tree—and compares their overall accuracy, precision, as well as recall values, f-measure, number of tweets correctly classified, number of tweets incorrectly classified, and execution time.


Author(s):  
Parita Shah ◽  
Priya Swaminarayan ◽  
Maitri Patel

<span>Opinion analysis is by a long shot most basic zone of characteristic language handling. It manages the portrayal of information to choose the motivation behind the wellspring of the content. The reason might be of a type of gratefulness (positive) or study (negative). This paper offers a correlation between the outcomes accomplished by applying the calculation arrangement using various classifiers for instance K-nearest neighbor and multinomial naive Bayes. These techniques are utilized to assess a significant assessment with either a positive remark or negative remark. The gathered information considered on the grounds of the extremity film datasets and an association with the results accessible proof has been created for a careful assessment. This paper investigates the word level count vectorizer and term frequency inverse document frequency (TF-IDF) influence on film sentiment analysis. We concluded that multinomial Naive Bayes (MNB) classier generate more accurate result using TF-IDF vectorizer compared to CountVectorizer, K-nearest-neighbors (KNN) classifier has the same accuracy result in case of TF-IDF and CountVectorizer.</span>


2021 ◽  
Vol 8 (1) ◽  
pp. 50-56
Author(s):  
Nico Nathanael Wilim ◽  
Raymond Sunardi Oetama

Indonesia Lawyers Club (ILC) is a talk show on TVOne that discusses topics around public phenomena, legal issues, crime, and other similar topics. In 2018, ILC won the Panasonic Gobel Awards as the best news talk show program. But in 2019, ILC failed to win the award which was won by Mata Najwa which featured a talk show event that appeared on Trans7. As one of the television shows that has won awards, ILC has pros and cons for its shows from the public. This study applies a sentiment analysis approach to examine public opinion on Twitter about Mata Najwa and ILC in 2018 and 2019. This study applies K-Nearest Neighbor, Naïve Bayes Classifier, and Decision Tree classification algorithm to validate the result. The contribution of this study is to show that public opinion on Twitter can be examined to figure out community sentiment on a tv talk show as well as to confirm the Award winner of tv Talkshow.   Index Terms—datamining; Decision Tree; K-NN; Naïve Bayes Classifier; sentiment analysis


Data mining usually specifies the discovery of specific pattern or analysis of data from a large dataset. Classification is one of an efficient data mining technique, in which class the data are classified are already predefined using the existing datasets. The classification of medical records in terms of its symptoms using computerized method and storing the predicted information in the digital format is of great importance in the diagnosis of various diseases in the medical field. In this paper, finding the algorithm with highest accuracy range is concentrated so that a cost-effective algorithm can be found. Here the data mining classification algorithms are compared with their accuracy of finding exact data according to the diagnosis report and their execution rate to identify how fast the records are classified. The classification technique based algorithms used in this study are the Naive Bayes Classifier, the C4.5 tree classifier and the K-Nearest Neighbor (KNN) to predict which algorithm is the best suited for classifying any kind of medical dataset. Here the datasets such as Breast Cancer, Iris and Hypothyroid are used to predict which of the three algorithms is suitable for classifying the datasets with highest accuracy of finding the records of patients with the particular health problems. The experimental results represented in the form of table and graph shows the performance and the importance of Naïve Bayes, C4.5 and K-Nearest Neighbor algorithms. From the performance outcome of the three algorithms the C4.5 algorithm is a lot better than the Naïve Bayes and the K-Nearest Neighbor algorithm.


Author(s):  
Rajni Rajni ◽  
Amandeep Amandeep

<p>Diabetes is a major concern all over the world. It is increasing at a fast pace. People can avoid diabetes at an early stage without any test. The goal of this paper is to predict the probability of whether the person has a risk of diabetes or not at an early stage. This would lead to having a great impact on their quality of human life. The datasets are Pima Indians diabetes and Cleveland coronary illness and consist of 768 records. Though there are a number of solutions available for information extraction from a huge datasets and to predict the possibility of having diabetes, but the accuracy of their mining process is far from accurate. For achieving highest accuracy, the issue of zero probability which is generally faced by naïve bayes analysis needs to be addressed suitably. The proposed framework RB-Bayes aims to extract the required information with high accuracy that could survive the problem of zero probability and also configure accuracy with other methods like Support Vector Machine, Naive Bayes, and K Nearest Neighbor. We calculated mean to handle missing data and calculated probability for yes (positive) and no (negative). The highest value between yes and no decide the value for the tuple. It is mostly used in text classification. The outcomes on Pima Indian diabetes dataset demonstrate that the proposed methodology enhances the precision as a contrast with other regulated procedures. The accuracy of the proposed methodology large dataset is 72.9%.</p>


Sign in / Sign up

Export Citation Format

Share Document