scholarly journals Information System Design for Calculating the Reliability of Electricity Distribution System in Pekalongan Substation Based on Android OS

2020 ◽  
Vol 4 (2) ◽  
pp. 72-78
Author(s):  
Salman Muntaqo Aprilian ◽  
Faaris Mujaahid ◽  
Ramadoni Syahputra ◽  
Karisma Trinanda Putra ◽  
Widyasmoro Widyasmoro

Reliability of distribution networks is a factor that greatly affects customers as consumers of electricity. Analyzing and calculating the reliability of distribution networks are determined by the reliability index including SAIFI, SAIDI, CAIDI, and ASAI. On the other hand, smartphone technology is growing rapidly with a variety of applications to help simplify and accelerate human work in several fields of work. This paper delivers the design of an Android-phone-based analytic tool for distribution system reliability index measurement by developing it on Android application software. This application is named KALINDA, stands for Kalkulator Indeks Keandalan (Reliability Index Calculator), and created by using Android Studio IDE. We compare the data result between KALINDA calculations and manual calculations. The results obtained from the KALINDA application are declared to be valid accurate.

Author(s):  
M Thomson ◽  
D Infield

This paper investigates potential technical effects that a high take up of domestic micro-CHP could have on an electricity distribution system. This study is based on a combination of house-by-house energy use modelling and network power-flow analysis. A variety of micro-CHP technologies are represented, including Stirling engines, internal combustion engines, and fuel cells. These have different heat-to-power ratios and thus different impacts on the electricity system. The results and discussion focus on voltage rise, which is considered to be the primary constraint on allowable penetration.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 799 ◽  
Author(s):  
Chen ◽  
Tang ◽  
Sun ◽  
Zhou ◽  
Wang ◽  
...  

The load characteristic of typical household electrical equipment is elaborately analyzed. Considering the electric vehicles’ (EVs’) charging behavior and air conditioning’s thermodynamic property, an electricity price-based demand response (DR) model and an incentive-based DR model for two kinds of typical high-power electrical equipment are proposed to obtain the load curve considering two different kinds of DR mechanisms. Afterwards, a load shedding strategy is introduced to improve the traditional reliability evaluation method for distribution networks, with the capacity constraints of tie lines taken into account. Subsequently, a reliability calculation method of distribution networks considering the shortage of power supply capacity and outages is presented. Finally, the Monte Carlo method is employed to calculate the reliability index of distribution networks with different load levels, and the impacts of different DR strategies on the reliability of distribution networks are analyzed. The results show that both DR strategies can improve the distribution system reliability.


2014 ◽  
Vol 490-491 ◽  
pp. 1661-1665
Author(s):  
Jian Lin Yang ◽  
Cong Gan Ma ◽  
Zhi Gang Lu ◽  
Yang Bai

Distribution networks are directly connected to the users and the reliability of its power supply is able to reflect the structures and the operating conditions of the whole power system. In the analysis of distribution system reliability evaluation, it is unlikely to get the exact value of the model parameters and is necessary to consider the uncertainties. The network structure, the reliability parameters and load level and their effects on the reliability are studied in quantity and the results are proved in the case.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1220
Author(s):  
Ovidiu Ivanov ◽  
Samiran Chattopadhyay ◽  
Soumya Banerjee ◽  
Bogdan-Constantin Neagu ◽  
Gheorghe Grigoras ◽  
...  

Demand Side Management (DSM) is becoming necessary in residential electricity distribution networks where local electricity trading is implemented. Amongst the DSM tools, Demand Response (DR) is used to engage the consumers in the market by voluntary disconnection of high consumption receptors at peak demand hours. As a part of the transition to Smart Grids, there is a high interest in DR applications for residential consumers connected in intelligent grids which allow remote controlling of receptors by electricity distribution system operators and Home Energy Management Systems (HEMS) at consumer homes. This paper proposes a novel algorithm for multi-objective DR optimization in low voltage distribution networks with unbalanced loads, that takes into account individual consumer comfort settings and several technical objectives for the network operator. Phase load balancing, two approaches for minimum comfort disturbance of consumers and two alternatives for network loss reduction are proposed as objectives for DR. An original and faster method of replacing load flow calculations in the evaluation of the feasible solutions is proposed. A case study demonstrates the capabilities of the algorithm.


Author(s):  
Laila Zemite ◽  
Janis Gerhards ◽  
Mihails Gorobecs ◽  
Anatolijs Ļevčenkovs

Reliability analysis of distribution systems has been attracting increasing attention. A special concern pertains to the distribution networks on which most failures occurs. The optimization of distribution system of breakers and power switches is a possible strategy to improve reliability. The paper describes development procedure for modelling restoring after a fault and calculating associated reliability indices and customers’ outage costs. The developed model of the network and reliability and outage costs calculating algorithm is suitable for multi-criteria analysis of the network. Proposed reliability and outage costs calculation algorithm is based on Monte Carlo simulation and genetic algorithm.


Author(s):  
Kim Forssén ◽  
Kari Mäki ◽  
Minna Räikkönen ◽  
Riitta Molarius

Extreme weather forms a major threat to electricity distribution networks and has caused many severe power outages in the past. A reliable electrical grid is something most of us take for granted, but storms, heavy snowfall, and other effects of extreme weather continue to cause disruptions in electricity supply. This paper contributes to ensuring the continuity of electricity supply under adverse weather events. The aim is to describe and to analyze how the continuity of electricity supply can be ensured in the case of extreme weather. Based on the research, the energy sector is highly dependent on the existing locations and structures of the current infrastructure. Aging infrastructure is commonly seen as a main vulnerability factor. The most vulnerable parts of the electricity distribution system to extreme weather conditions are the networks built as overhead lines. However, the resilience of the networks against extreme weather can be increased significantly in all phases of a disaster management cycle. Methods and technological solutions proposed in this paper to alleviate such problems include adjacent forest management and periodic aerial inspections, situational awareness, distributed generation and microgrids, placement of overhead lines, underground cabling, and unmanned air vehicles. However, it must be noticed that the methods and their value for stakeholders are context-dependent. Thus, their applicability and appropriateness may change over time.


Sign in / Sign up

Export Citation Format

Share Document