scholarly journals Parasitization and Identification of The Red Guava Fruit Fly Parasitoids in The Deli Serdang District

2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Putri Mustika Sari ◽  
Darma Bakti ◽  
Lisdayani Lisdayani
1970 ◽  
pp. 01-04
Author(s):  
Esameldin B. M. Kabbashi, Ghada H. Abdelrahman and Nawal A. Abdlerahman

Guava (Psidium guajava L.) is a lovely tropical and subtropical fruit that originates in Mexico, Central America, and then taken to other distant and near parts around the world. In Sudan this popular fruit is produced in orchards and household and is so profitable but yet attacked by a lot of fruit fly species of the Genera Ceratitis and Bactrocera and the result is a loss of more than 70%. This research aimed at evaluating the effect of Gum Arabic coating (GAC) in extending the shelf life of guava fruit and disinfesting it from these notorious pests. Guava fruits from Kadaro orchards, Khartoum North, were tested using seven concentrations of Gum Arabic solutions. The results reflect that 1: 4 (25%) and 1: 8 (12.5%) (GA: water) concentrations attained 56 and 40% disinfestation, respectively whereas the other lower concentrations effected corresponding results in a range from 20 – 08%. The reduction in maggots per test fruit reached upto 188% as compared to the control.  The highest concentrations (1: 4 & 1: 8) effected a sustainability of 52% in fruit firmness (FF) with an average of medium (3) FF compared to soft FF (4) in the control. The corresponding results in other lower concentrations (1: 16; 1: 32; 1: 64; 1: 72 & 1: 96) were 36, 24, 24, 20 and 16%, respectively. In addition to an average FF of 4 (soft) for all these concentrations and 5 (very soft) for all the corresponding controls. Nevertheless, the sustainability of fruit color (FC) effected by the test concentrations was 52, 44, 24, 22, 24, 20, and 24%, respectively. Regarding these results, the two highest test concentrations effected a sizeable disinfestation and control of fruit flies and a good extension of shelf life of guava in Khartoum State. These findings support using this treatment as an effective IPM tool to extend guava fruit shelf life and upgrading its postharvest quality.


EDIS ◽  
1969 ◽  
Vol 2004 (5) ◽  
Author(s):  
Howard V. Weems, Jr. ◽  
John B. Heppner ◽  
Thomas R. Fasulo ◽  
James L. Nation

The Caribbean fruit fly, Anastrepha suspensa (Loew), has also been called the Greater Antilliean fruit fly, the guava fruit fly and the Caribfly. It is a near relative of the Mexican fruit fly, Anastrepha ludens (Loew), and is one of several species of fruit flies which are indigenous to the West Indies and the larvae of which attack several kinds of tropical and subtropical fruits. This document is EENY-196 (originally published as DPI Entomology Circulars 38 and 260), one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: March 2001. EENY196/IN353: Caribbean Fruit Fly, Anastrepha suspensa (Loew) (Insecta: Diptera: Tephritidae) (ufl.edu)


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jorge Cancino ◽  
Rubén Leal-Mubarqui ◽  
Roberto Angulo ◽  
Cesar Pérez ◽  
Lucy Tirado

Abstract Different densities prerelease packing and times of lethargy in the fruit fly parasitoids Diachasmimorpha longicaudata (Ashmead) were evaluated in order to standardize the process of chilled insect technique for this species. Adults were kept at densities of 0.048, 0.072, 0.096, 0.120, and 0.144 parasitoids/cm2 before release in a México tower, where thermal lethargy was induced at a temperature of 2 ± 2°C for 45 min. Samples of parasitoids were collected to evaluate mortality, survival, fecundity, and flight capacity. All densities showed a similar mortality, both for males (ca. >10%) and females (ca. <7). There was no effect of density on survival and flight capacity in both sexes. On the other hand, fecundity increased with density, 1.66 sons/♀/day, similar to the control. We conclude that a density of 30,000 pupae per cage (0.144 parasitoids/cm2) is adequate for the massive prerelease packaging of the parasitoid D. longicaudata. Regarding the thermal lethargy period, 180 min under 2 ± 2°C conditions, considered as time for management, does not affect the survival, fecundity, and flight capacity of adults. The results obtained are of great utility to establish prerelease packaging parameters for D. longicaudata used in the biological control of Tephritidae fruit fly populations.


2000 ◽  
Vol 83 (3) ◽  
pp. 563-568
Author(s):  
Jocelyn P Alcantara-Licudine ◽  
Ngoc Lan Bui ◽  
Qing X Li ◽  
Grant T McQuate ◽  
Steven L Peck

Abstract Xanthene dyes, i.e., phloxine B and uranine or phloxine B alone, are phototoxic to tephritid fruit flies infesting guava fruits. An analytical method was developed for determination of residues of these dyes used in bait solutions for suppression of the tephritid fruit fly population in guava fruits. The procedure involved solvent extraction, anionexchange cleanup, and determination by liquid chromatography or capillary zone electrophoresis. The dyes were extracted from 50 g guava fruit at 45°C with 400 mL methanol–acetonitrile (1 + 1) and 5 g magnesium oxide added as an alkaline and clarifying agent. The guava extract was adjusted to pH 8.5 and subjected to an amino column cleanup. Average recoveries of xanthene dyes added to guava purees ranged from 77 to 99% for phloxine B and from 79 to 102% for uranine at spiking levels of 0.05–1.00 μg/g. The method was applied to the determination of phloxine B residues in guava fruits collected from a dye-sprayed orchard. After phloxine B was applied at a rate of 62.5 g/ha for 14 weekly sprayings, it was found on guava fruits at an average concentration of 111 ± 18 ng/g 4 h after the 11th spraying. The concentration of phloxine B was 426 ± 94 ng/g in selected fruits with high deposits of the dye 4 h after spraying. Average concentrations of phloxine B 5 days after the 7th and 14th sprayings were 29 ± 7 and 19 ± 8 ng/g, respectively.


2012 ◽  
Vol 459 ◽  
pp. 224-228
Author(s):  
Yuan Ping Ni ◽  
Xiao Fei Liu ◽  
Hui Ye

Based on discussing the advantages of improving genetic algorithm and analyzing the defects of back propagation neural network, we presented the genetic neural model. The simulating data proved that the genetic neural model was able to realize parallel search and could get faster searching speed during random searching optimizaiton. The model was applied to predicting distribution of guava fruit fly. The experimental results show that the model can predict distribution of the fly which is consistent with the practical distribution. The model is very useful in practice. It is worthwhile to refer the model to predicting similar insects.


BioControl ◽  
2010 ◽  
Vol 56 (3) ◽  
pp. 283-293 ◽  
Author(s):  
Xin-geng Wang ◽  
Marshall W. Johnson ◽  
Victoria Y. Yokoyama ◽  
Charles H. Pickett ◽  
Kent M. Daane

2010 ◽  
Vol 20 (6) ◽  
pp. 621-624 ◽  
Author(s):  
Aruna Manrakhan ◽  
Hannah Nadel ◽  
Mathew C. Middleton ◽  
Kent M. Daane

2021 ◽  
Vol 24 (2) ◽  
pp. 224
Author(s):  
Rahmi Fitrah ◽  
Deni Pranowo ◽  
Suputa Suputa

The oriental fruit fly Bactocera dorsalis (Hendel) is an important pest of snake fruit (Salacca zalacca) in Sleman District. Due to the high level of damage by the fruit flies, it is necessary to do. The aim of this research was to find out suitable fruit traps, by testing the oviposition preferences of the fruit flies in the orchard to lay eggs on several types of fruit. The research was done in snake fruit orchard located at Sleman Yogyakarta and owned by farmers, while the Lab works were done at the Laboratory of Entomology, Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada. All researches were done between April-June 2019. Guava (Psidium guajava), watery rose apples (Syzygium aqueum), starfruit (Averrhoa carambolae), and snake fruit (Salacca zalacca) were used as trap crops. Each fruit, with the same maturity level, was hung 1.5 m above the ground for 4 days with 12 days total trapping at intervals of 3 times. After the test, each fruit was taken and the insects in it were reared in the laboratory. The number of pupae and flies that emerged from each fruit was counted and compared. The results showed that in the orchard 1 as well as  2, of guava fruit produced the highest number of (151 pupae) followed by salak (94 pupae), star fruit (83 pupae), and water guava (2 pupae). The finding of seeds shows that guava fruit is the most suitable host for the fruit flies to be used in the trapping, followed by star fruit and watery guava.


Sign in / Sign up

Export Citation Format

Share Document