scholarly journals Vepris nobilis plant: a potential source of anticancer agents

Author(s):  
Carolyne Chepkirui ◽  
Richard Kagia

Background: Cancer is one of the major causes of death worldwide. Current cancer therapy is costly, it has poor therapeutic outcomes and many side effects. Therefore, new medications are needed. Plants have been used as sources of anticancer drugs. Vepris species have anticancer properties. The purpose of this study is to assess Vepris nobilis, a plant found in Kenya as a potential source of anticancer drugs.Methods: The dichloromethane/methanol (CH2Cl2/MeOH) 1:1 extract of the stem bark of Vepris nobilis led to the isolation of an alkaloid named, 4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo[2,3-b]quinolone. SwissADME online tool was used to assess the compound’s pharmacokinetic parameters. Pass online tool identified potential targets while protox server described the toxicity of the compound. Chimera and Avogadro softwares were used for molecular docking studies.Results: In-silico pharmacokinetic studies, showed that the isolated compound complied with Lipinski rule of five, it showed high gastrointestinal activity, and it also inhibits cytochrome P450 (CYP) isoforms 1A2, 2C9 and 2C19. In toxicity studies the compound was relatively safe with a predicted median lethal dose (LD50) of 1600 mg/kg, apart from potential immunotoxicity and mutagenicity. Molecular docking studies demonstrated that, the compound has potential anticancer activity, it interacted with deoxyribonucleic acid (DNA) topoisomerase I in an almost similar manner to camptothecin though it had less binding potential.Conclusions: 4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy) furo[2,3-b]quinolone derived from Vepris nobilis is a potential drug for the management of cancer which can be administered orally.

Author(s):  
HARSHITHA T ◽  
VINAY KUMAR T ◽  
VINEETHA T

Objective: The objective of the study was to perform in silico molecular docking and in vitro anticancer studies of proposed 1,2,4-triazole derivatives for the determination of their anticancer activity. Methods: A series of 10 triazole compounds with different substituents were drawn in ACD Lab ChemSketch software. Molecular and biological properties were identified using Molinspiration software. The compounds that obeyed Lipinski rule of five are subjected for pharmacokinetic parameters prediction and docking analysis. SwissDock ADME software is used for the prediction of absorption, distribution, metabolism, and elimination. Then, the compounds are docked with target enzymes in Chimera software 1.14 version. The molecular docking studies revealed favorable molecular interactions and binding energies. The compounds that showed good docking results were synthesized through wet lab synthesis and further preceded for in vitro anticancer studies. Results: Three compounds are selected for wet lab synthesis due to their good docking results compared to other compounds. The synthesized compounds are subjected to different in vitro anticancer studies and found to be having potential anticancer activity. Conclusion: The pharmacokinetic and docking studies conclude that the triazole compounds have potential as anticancer agents. The in vitro anticancer studies revealed that the triazole derivatives are having high potency of anticancer activity against pancreatic cell lines.


Molbank ◽  
10.3390/m1234 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1234
Author(s):  
Nazim Hussain ◽  
Bibhuti Bhushan Kakoti ◽  
Mithun Rudrapal ◽  
Khomendra Kumar Sarwa ◽  
Ismail Celik ◽  
...  

Cordia dichotoma Forst. (F. Boraginaceae) has been traditionally used for the management of a variety of human ailments. In our earlier work, the antidiabetic activity of methanolic bark extract of C. dichotoma (MECD) has been reported. In this paper, two flavonoid molecules were isolated (by column chromatography) and identified (by IR, NMR and mass spectroscopy/spectrometry) from the MECD with an aim to investigate their antidiabetic effectiveness. Molecular docking and ADMET studies were carried out using AutoDock Vina software and Swiss ADME online tool, respectively. The isolated flavonoids were identified as 3,5,7,3′,4′-tetrahydroxy-4-methoxyflavone-3-O-L-rhamnopyranoside and 5,7,3′-trihydroxy-4-methoxyflavone-7-O-L-rhamnopyranoside (quercitrin). Docking and ADMET studies revealed the promising binding affinity of flavonoid molecules for human lysosomal α-glucosidase and human pancreatic α-amylase with acceptable ADMET properties. Based on computational studies, our study reports the antidiabetic potential of the isolated flavonoids with predictive pharmacokinetics profile.


2013 ◽  
Vol 22 (11) ◽  
pp. 5256-5266 ◽  
Author(s):  
Vikas Garg ◽  
Ankit Kumar ◽  
Anurag Chaudhary ◽  
Saurabh Agrawal ◽  
Praveen Tomar ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lamya H. Al-Wahaibi ◽  
Hanaa M. Abu-Melha ◽  
Diaa A. Ibrahim

A series of novel coumarin derivatives carrying 1,2,4-triazole or 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole moieties were prepared and evaluated in vitro as anticancer in the human colon cancer (HCT116) cell line. The derivatives 4c and 8c exhibited marked anticancer activity with IC50 values 4.363 and 2.656 µM, respectively. The molecular docking studies suggested possible interaction with tyrosine kinases (CDK2).


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1789 ◽  
Author(s):  
Julia Krzywik ◽  
Witold Mozga ◽  
Maral Aminpour ◽  
Jan Janczak ◽  
Ewa Maj ◽  
...  

Colchicine is a well-known compound with strong antiproliferative activity that has had limited use in chemotherapy because of its toxicity. In order to create more potent anticancer agents, a series of novel colchicine derivatives have been obtained by simultaneous modification at C7 (amides and sulfonamides) and at C10 (methylamino group) positions and characterized by spectroscopic methods. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX and BALB/3T3 cell lines. Additionally, the activity of the studied compounds was investigated using computational methods involving molecular docking of the colchicine derivatives to β-tubulin. The majority of the obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin or cisplatin against tested cancer cell lines. Furthermore, molecular modeling studies of the obtained compounds revealed their possible binding modes into the colchicine binding site of tubulin.


2020 ◽  
Vol 97 ◽  
pp. 103664 ◽  
Author(s):  
Greta Klejborowska ◽  
Alicja Urbaniak ◽  
Ewa Maj ◽  
Jordane Preto ◽  
Mahshad Moshari ◽  
...  

2019 ◽  
Vol 20 (4) ◽  
pp. 1-10
Author(s):  
Ehimen Annastasia Erazua ◽  
Abel Kolawole Oyebamiji ◽  
Babatunde Benjamin Adeleke

Sign in / Sign up

Export Citation Format

Share Document