scholarly journals Pulse Width Modulation Switching Schemes for Two-Level Five-Phase Voltage Source Inverter

2021 ◽  
Vol 23 (2) ◽  
pp. 137-142
Author(s):  
Shailesh Kumar Gupta ◽  
MohdArif Khan ◽  
Omveer Singh

This paper proposes pulse width modulation schemes for a two-level five-phase voltage source inverter. According to the literature, the generation of a pure sinusoidal waveform requires an (n-1) number of vectors for 'n' number of phases, so in a five-phase system, a minimum of four-vectors is needed to generate a sinusoidal waveform. The author uses only two large vectors in this paper for a five-phase voltage source inverter. Vector diagram, switching table, and switching waveform have presented for two adjacent large space vectors. The performance for each PWM scheme is analyze based on fundamental components and total harmonic distortion. In last, results have verified in the Simulink environment.

2021 ◽  
Vol 9 (04) ◽  
pp. 34-43
Author(s):  
K. Fernand Koffi ◽  
◽  
Agoua Raoule ◽  
Diety Landry ◽  
Georges Loum ◽  
...  

The need to use SPWM controlled voltage inverters in MV, led us to examine how to filter alternative signals with filters (L-C) and (RL-C). This allowed us to decide on the use of certain formulas for calculating the elements of these filters. Likewise, we have proposed a method of calculating the resistance R by mathematical iterations without using the quality factor Q, in order to obtain a low error rate between the RMS values and the fundamental effective values and THDs respecting the standard 519 IEEE - 2014. The results of these studies obtained using the MATLAB-SIMULINK software are presented in the penultimate session of this article. Nomenclature SPWM Sinusoidal Pulse-Width-Modulation THD Total Harmonic distortion SN Apparent power of the alternating load MV Medium voltage alternating voltage (1 kV --- 50 kV) Uph phase-to-phase voltage at the ac load RMS Root Mean Squared R L C Resistance Inductance Capacitor MVDC Medium voltage direct current VSI Voltage Source Inverter


Author(s):  
Sandeep Ojha ◽  
Ashok Kumar Pandey

<p>The aim of this paper to presents a comparative analysis of Voltage Source Inverter using Sinusoidal Pulse Width Modulation Method, Third Harmonic Injection Pulse Width Modulation Method and Space Vector Pulse Width Modulation Two level inverter for Induction Motor.  In this paper we have designed the Simulink model of Inverter for different technique. An above technique is used to reduce the Total Harmonic Distortion (THD) on the AC side of the Inverter. The Simulink model is close loop. Results are analyzed using Fast Fourier Transformation (FFT) which is for analysis of the Total Harmonic Distortion. All simulation are performed in the MATLAB Simulink / Simulink environment of MATLAB.</p>


2019 ◽  
Vol 4 (3) ◽  
pp. 230-243
Author(s):  
Mohammed A. Al-Hitmi ◽  
◽  
Shaikh Moinoddin ◽  
Atif Iqbal ◽  
Khaliqur Rahman ◽  
...  

2021 ◽  
Vol 23 (06) ◽  
pp. 1682-1698
Author(s):  
Laxmi Singh ◽  
◽  
Dr. Imran ◽  

The model of a three-phase voltage source inverter is examined based on space vector theory. SVPWM offers an improved outcome with the inverter as compared to the conservative SPWM technique for the inverter. There is a 15.5% upsurge in the line voltage of the inverter. SVPWM better exploits the available DC-link power with the SVPWM inverter. It has been revealed that the SVPWM method utilizes DC bus voltage extra competently and produces a smaller amount of harmonic distortion and easier digital realization in a three-phase voltage-source inverter. For converter‘s gating signals generation, the space-vector pulse width modulation (SVPWM) strategy lessens the switching losses by restricting the switching to two-thirds of the pulse duty cycle. A hypothetical study regarding the use of the SVPWM the three-level voltage inverter and simulation results are offered to prove the usefulness of the SVPWM in the involvement in the switching power losses lessening, output voltages with fewer harmonics. Nevertheless, despite all the above-cited benefits that SVPWM enjoys over SPWM, the SVPWM technique used in three-level inverters is more difficult on account of a large number of inverter switching states. The attained simulation outcomes were satisfactory. As prospects, future experimental works will authenticate the simulation results. A software simulation model is developed in Matlab/Simulink.


Sign in / Sign up

Export Citation Format

Share Document