scholarly journals Dynamic Impact Analysis of Integrating a 6 MW Solar Photovoltaic Power Plant into Medium Voltage Distribution Network

2021 ◽  
Vol 23 (5) ◽  
pp. 417-422
Author(s):  
Abbas F.G. Mohmmedali ◽  
Messaoud Hamouda ◽  
Ghaitaoui Touhami

In this paper, the impact of integrating a 6MW solar PV plant installed in Zaouiet Kounta (Wilaya Adrar), in southwest Algeria into a medium voltage network during transient conditions is analyzed. This network is fed by two sources, either a grid source or a conventional power plant if a grid source is not available. Three different transient circumstances are considered in this analysis. The impact on voltage and frequency at the network’s main busbar as well as generator rotor angle is investigated. The analysis is carried out on the network by using ETAP software. The analysis results showed that the integration of this PV plant has an adverse effect on network performance during transient conditions when a Conventional power plant is used to feed network. Moreover, it has a slight effect on main busbar voltage when a grid source is used to feed network.

2017 ◽  
Vol 24 (2) ◽  
pp. 358-382 ◽  
Author(s):  
Minhyun LEE ◽  
Taehoon HONG ◽  
Choongwan KOO ◽  
Chan-Joong KIM

Despite the steady growth and price reductions of solar photovoltaic (PV) market in the United States (U.S.), the solar PV market still depends on financial support and incentives due to its high initial investment cost. Therefore, this study aimed to conduct a break-even analysis and impact analysis of residential solar PV systems by state in the U.S., focused on state solar incentives. Three indexes (i.e., net present value, profitability index (PI) and payback period) were used to evaluate the investment value of the residential solar PV systems considering state solar incentives. Furthermore, PI increase ratio was used to analyze the impact of state solar incentives on the economic feasibility of the residential solar PV systems in each state. As a result, it was found that 18 of the 51 target cities have reached the break-even point and seven of the 51 target cities showed great improvement of the economic feasibility of solar PV systems in the U.S. due to excellent state solar incentives. The results of this study can help policy makers to evaluate and compare the economic impacts of the residential solar PV systems by state in the U.S.


Author(s):  
E Manikandan ◽  
K Mayandi ◽  
M Sivasubramanian ◽  
N Rajini ◽  
S Rajesh ◽  
...  

Solar energy is a major renewable energy resource used in power production, heating processes, and other applications such as domestic and industrial utilization. It is an abundant form of green energy. Different techniques have been made for energy conversion and one among them is solar photovoltaic/thermal (PV/T) system. Unfortunately, the greatest cause of concern is the rise in temperature of solar PV cells, which will have a negative effect on electrical performance. Thereby, eliminating excess heat on PV cells with heat transfer fluids to lower the temperature of the cells can improve electrical efficiency. A nanofluid is a promising heat transfer fluid to effectively enhance the system efficacy compared with conventional fluids. As the nanoparticle size is very small, the surface area of the nanoparticle is large so it enhances the heat transfer rate. Thereby, recently it has taken on a new dimension for research studies to enhance its thermal behavior for engineering application. This review paper discusses about the importance of nanofluid in solar PV/T system and advantages of employing nanofluid in PV/T system which has high thermo-physical properties. Nanoparticle and nanofluid preparation methods were presented. The thermo-physical properties like thermal conductivity, viscosity, density, and specific heat capacity were also discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Zhigang Lan

Focused on the utilization of nuclear energy in offshore oil fields, the correspondence between various hazards caused by blowout accidents (including associated, secondary, and derivative hazards) and the initiating events that may lead to accidents of offshore floating nuclear power plant (OFNPP) is established. The risk source, risk characteristics, risk evolution, and risk action mode of blowout accidents in offshore oil fields are summarized and analyzed. The impacts of blowout accident in offshore oil field on OFNPP are comprehensively analyzed, including injection combustion and spilled oil combustion induced by well blowout, drifting and explosion of deflagration vapor clouds formed by well blowouts, seawater pollution caused by blowout oil spills, the toxic gas cloud caused by well blowout, and the impact of mobile fire source formed by a burning oil spill on OFNPP at sea. The preliminary analysis methods and corresponding procedures are established for the impact of blowout accidents on offshore floating nuclear power plants in offshore oil fields, and a calculation example is given in order to further illustrate the methods.


2019 ◽  
Vol 122 ◽  
pp. 02004 ◽  
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

In 2017, electricity generation from renewable sources contributed more than one quarter (30.7%) to total EU-28 gross electricity consumption. Wind power is for the first time the most important source, followed closely by hydro power. The growth in electricity from photovoltaic energy has been dramatic, rising from just 3.8 TWh in 2007, reaching a level of 119.5 TWh in 2017. Over this period, the contribution of photovoltaic energy to all electricity generated in the EU-28 from renewable energy sources increased from 0.7% to 12.3%. During this period the investment cost of a photovoltaic power plant has decreased considerably. Fundamentally, the cost of solar panels and inverters has decreased by more than 50%. The solar photovoltaic energy potential depends on two parameters: global solar irradiation and photovoltaic panel efficiency. The average solar irradiation in Spain is 1,600 kWh m-2. This paper analyzes the economic feasibility of developing large scale solar photovoltaic power plants in Spain. Equivalent hours between 800-1,800 h year-1 and output power between 100-400 MW have been considered. The profitability analysis has been carried out considering different prices of the electricity produced in the daily market (50-60 € MWh-1). Net Present Value (NPV) and Internal Rate of Return (IRR) were estimated for all scenarios analyzed. A solar PV power plant with 400 MW of power and 1,800 h year-1, reaches a NPV of 196 M€ and the IRR is 11.01%.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Atul Kumar1 ◽  
Srivastava Manish2

Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.           Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.


2021 ◽  
Author(s):  
◽  
Daniel Akinyele

<p>This thesis proposes Solar Photovoltaic Microgrids (SPMs) for six different remote communities in Nigeria, one from each of the country’s geopolitical zones. The research analysis is presented based on the basic load demand of 24 households within each of the selected communities. The arrangements of the houses are obtained from the community’s layout provided by a building consortium.  The study first presents the intended users’ basic energy needs and their daily energy usage. The available solar energy resources of the different locations are also carefully examined, in relation to their disparities, intermittent characteristics and seasonal variations. The research also emphasises the possibility of load growth. With such consideration, more practical electrification solutions can be achieved. The study considers users’ electricity demand growth of 25 to 75% of the baseline value of 175 kWh/d.  The photovoltaic microgrid systems are modelled in the DIgSILENT PowerFactory environment. The lengths of the lines running from the electric power plant to the households are obtained from the community’s layout. This information is included in the model, coupled with the solar energy data and the technical configurations of the PV arrays.  The effectiveness of the proposed SPMs is evaluated by first comparing the techno-economic and environmental assessment results with those of a diesel power plant. This is also done by comparing the results with some existing related outputs in the literature, which are reported for solar photovoltaic systems in different regions of the world.  The research results indicate that it is possible to develop practical, cost-effective and reliable clean energy systems for the specified communities based on solar photovoltaic technology. The SPMs have the capability to compete with conventional electricity options – diesel/petrol generators with which some households are already familiar. Furthermore, even though the diesel plant’s initial capital cost is as low as ~ 10 - 17% of those of the SPMs, its life cycle costs are ~ 2 - 2.3 times the life cycle costs of the proposed SPMs for the six locations. Over the 25-year project life span, the SPMs clearly provide a significant economic benefit.  The battery average SoC probability distribution values of >98% above the minimum set point of 30% were also achieved. The reliability indices, i.e. LOEP of < 5%, availability of > 95% achieved in this study for the SPMs, are also comparable with the existing results in the literature. The SPM’s estimated emission rate is ~57 gCO₂/kWh, which is lower than the values of 576 - 695 gCO₂/kWh obtained for diesel systems. The SPM system’s GWP ranges from 3,409 to 7,945 kgCO₂-eq. Also, the system’s EPBTs and EROIs range from 1.11 to 1.6 years and 15.63 to 22.52, respectively, of the specified locations.  The proposed SPM model is based on the global engineering standards and best practices and has very considerable practical applications. These can provide a reference point for governments, policymakers, researchers, designers, planners, and other stakeholders of interest in conceptualising and proceeding with the design, planning, and development of new electrification systems for remote communities.</p>


2017 ◽  
Vol 114 (45) ◽  
pp. 11867-11872 ◽  
Author(s):  
Xiaoyuan Li ◽  
Fabian Wagner ◽  
Wei Peng ◽  
Junnan Yang ◽  
Denise L. Mauzerall

Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003–2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth’s Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m2per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20–25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity.


2017 ◽  
Vol 36 (3) ◽  
pp. 509-534 ◽  
Author(s):  
Anita MM Liu ◽  
Otto Xinning Liang ◽  
Martin Tuuli ◽  
Isabelle Chan

As a knowledge-based industry, the structure of the solar photovoltaic industry is influenced continuously by transformations which originate from technosciences. This paper adopts the notion of the ‘science’ community to include universities and research institutes to examine government funding impact on science–industry collaboration in the Chinese solar photovoltaic industry. The triple helix model of university–industry–government relations for explaining structural developments in knowledge-based economies is often used to depict integration among functions of knowledge creation, business production and governance control at the interfaces in these knowledge-based organizations. Through comparisons between subsidized and nonsubsidised R&D activities, based on 10,366 scientific publications derived from the databases of Web of Science during the period from 2003 to 2013, the impact of government funding on their research collaboration is examined in the solar photovoltaic industry take-off phase and acceleration phase. The findings show that the three helices interact to foster collaboration between the knowledge-based organizations where the government–science link and the government–industry link are fairly strong, but the science–industry link is relatively weak. In consequence, policy-makers should develop more effective mechanisms to foster knowledge diffusion between science and industry.


2021 ◽  
Author(s):  
◽  
Daniel Akinyele

<p>This thesis proposes Solar Photovoltaic Microgrids (SPMs) for six different remote communities in Nigeria, one from each of the country’s geopolitical zones. The research analysis is presented based on the basic load demand of 24 households within each of the selected communities. The arrangements of the houses are obtained from the community’s layout provided by a building consortium.  The study first presents the intended users’ basic energy needs and their daily energy usage. The available solar energy resources of the different locations are also carefully examined, in relation to their disparities, intermittent characteristics and seasonal variations. The research also emphasises the possibility of load growth. With such consideration, more practical electrification solutions can be achieved. The study considers users’ electricity demand growth of 25 to 75% of the baseline value of 175 kWh/d.  The photovoltaic microgrid systems are modelled in the DIgSILENT PowerFactory environment. The lengths of the lines running from the electric power plant to the households are obtained from the community’s layout. This information is included in the model, coupled with the solar energy data and the technical configurations of the PV arrays.  The effectiveness of the proposed SPMs is evaluated by first comparing the techno-economic and environmental assessment results with those of a diesel power plant. This is also done by comparing the results with some existing related outputs in the literature, which are reported for solar photovoltaic systems in different regions of the world.  The research results indicate that it is possible to develop practical, cost-effective and reliable clean energy systems for the specified communities based on solar photovoltaic technology. The SPMs have the capability to compete with conventional electricity options – diesel/petrol generators with which some households are already familiar. Furthermore, even though the diesel plant’s initial capital cost is as low as ~ 10 - 17% of those of the SPMs, its life cycle costs are ~ 2 - 2.3 times the life cycle costs of the proposed SPMs for the six locations. Over the 25-year project life span, the SPMs clearly provide a significant economic benefit.  The battery average SoC probability distribution values of >98% above the minimum set point of 30% were also achieved. The reliability indices, i.e. LOEP of < 5%, availability of > 95% achieved in this study for the SPMs, are also comparable with the existing results in the literature. The SPM’s estimated emission rate is ~57 gCO₂/kWh, which is lower than the values of 576 - 695 gCO₂/kWh obtained for diesel systems. The SPM system’s GWP ranges from 3,409 to 7,945 kgCO₂-eq. Also, the system’s EPBTs and EROIs range from 1.11 to 1.6 years and 15.63 to 22.52, respectively, of the specified locations.  The proposed SPM model is based on the global engineering standards and best practices and has very considerable practical applications. These can provide a reference point for governments, policymakers, researchers, designers, planners, and other stakeholders of interest in conceptualising and proceeding with the design, planning, and development of new electrification systems for remote communities.</p>


2021 ◽  
Author(s):  
◽  
Michael Emmanuel

<p>As the solar PV technology continues to evolve as the most common distributed generation (DG) coupled with increasing interconnection requests, accurate modelling of the potential operational impacts of this game-changer is pivotal in order to maintain the reliability of the electric grid. The overall goal of this research is to conduct an interconnection impact analysis of solar PV systems at increasing penetration levels subject to the feeder constraints within the distribution network. This is carried out with a time series power flow analysis method to capture the time-varying nature of solar PV and load with their interactions with the distribution network device operations. Also, this thesis analyses multiple PV systems scenarios and a wide range of possible impacts to enable distribution system planners and operators understand and characterize grid operations with the integration of PV systems.  An evaluation of the operational and reliability performance of a grid-connected PV system based on IEC standards and industry guides is performed to detect design failures and avoid unnecessary delays to PV penetration. The performance analysis metrics in this research allow cross-comparison between PV systems operating under different climatic conditions. This thesis shows the significant impact of temperature on the overall performance of the PV system. This research conducts an interconnection study for spatially distributed single-phase grid-tied PV systems with a five minute-resolution load and solar irradiance data on a typical distribution feeder. Also, this research compares the performance of generator models, PQ and P |V |, for connecting PV-DG with the distribution feeder with their respective computational costs for a converged power flow solution.  More so, a method capable of computing the incremental capacity additions, measuring risks and upgrade deferral provided by PV systems deployments is investigated in this research. This thesis proposes surrogate metrics, energy exceeding normal rating and unserved energy, for evaluating system reliability and capacity usage which can be a very useful visualization tool for utilities. Also, sensitivity analysis is performed for optimal location of the PV system on the distribution network. This is important because optimal integration of PV systems is often near-optimal for network capacity relief issues as well.  This thesis models the impact of centralized PV variability on the electric grid using the wavelet variability model (WVM) which considers the key factors that affect PV variability such as PV footprint, density and cloud movement over the entire PV plant. The upscaling advantage from a single module and point irradiance sensor to geographic smoothing over the entire PV footprint in WVM is used to simulate effects of a utility-interactive PV system on the distribution feeder.  Further, the PV interconnection scenarios presented in this thesis have been modelled with different time scales ranging from seconds to hours in order to accurately capture and represent various impacts. The analysis and advancements presented in this thesis will help utilities and other stakeholders to develop realistic projections of PV systems impacts on the grid. Also, this research will assist in understanding and full characterization of PV integration with the grid to avoid unnecessary delays.</p>


Sign in / Sign up

Export Citation Format

Share Document