scholarly journals Analyzing the impact of dust accumulation and different cleaning mechanism on efficiency of solar photovoltaic panel

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Atul Kumar1 ◽  
Srivastava Manish2

Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.           Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.

Author(s):  
Rakesh Dalal ◽  
Kamal Bansal ◽  
Sapan Thapar

Rooftop solar photovoltaic(PV) installation in India have increased in last decade because of the flat 40 percent subsidy extended for rooftop solar PV systems (3 kWp and below) by the Indian government under the solar rooftop scheme. From the residential building owner's perspective, solar PV is competitive when it can produce electricity at a cost less than or equal grid electricity price, a condition referred as “grid parity”. For assessing grid parity of 3 kWp and 2 kWp residential solar PV system, 15 states capital and 19 major cities were considered  for the RET screen simulation by using solar isolation, utility grid tariff, system cost and other economic parameters. 3 kWp and 2 kWp rooftop solar PV with and without subsidy scenarios were considered for simulation using RETscreen software. We estimate that without subsidy no state could achieve grid parity for 2kWp rooftop solar PV plant. However with 3 kWp rooftop solar PV plant only 5 states could achieve grid parity without subsidy and with government subsidy number of states increased to 7, yet wide spread parity for residential rooftop solar PV is still not achieved. We find that high installation costs, subsidized utility grid supply to low energy consumer and financing rates are major barriers to grid parity.


2017 ◽  
Vol 24 (2) ◽  
pp. 358-382 ◽  
Author(s):  
Minhyun LEE ◽  
Taehoon HONG ◽  
Choongwan KOO ◽  
Chan-Joong KIM

Despite the steady growth and price reductions of solar photovoltaic (PV) market in the United States (U.S.), the solar PV market still depends on financial support and incentives due to its high initial investment cost. Therefore, this study aimed to conduct a break-even analysis and impact analysis of residential solar PV systems by state in the U.S., focused on state solar incentives. Three indexes (i.e., net present value, profitability index (PI) and payback period) were used to evaluate the investment value of the residential solar PV systems considering state solar incentives. Furthermore, PI increase ratio was used to analyze the impact of state solar incentives on the economic feasibility of the residential solar PV systems in each state. As a result, it was found that 18 of the 51 target cities have reached the break-even point and seven of the 51 target cities showed great improvement of the economic feasibility of solar PV systems in the U.S. due to excellent state solar incentives. The results of this study can help policy makers to evaluate and compare the economic impacts of the residential solar PV systems by state in the U.S.


IJOSTHE ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 5
Author(s):  
Neha Singh ◽  
Prof. Govind Prasad Pandiya

Solar energy is one of the most used and readily available renewable energy sources among the other energy sources. The power generated by PV systems is dependent on solar irradiance and temperature parameters. In the literature, many researchers and studies are interested in estimating true maximum efficiency point for the PV systems. Due to that fact, MPPT applications and techniques become an important issue for PV systems under both uniform and non uniform conditions. Although, PV system under uniform environment has only one maxima point on P-V curve which is simple to estimate correctly by conventional MPPT techniques, it is not as simple as under non-uniform condition such as partial shading and mismatch effects. To overcome the drawbacks of the conventional MPPTs under non uniform condition, researchers has been investigated new soft computing MPPTs, PV array configurations, system architectures and topologies.


2021 ◽  
Vol 1 (1) ◽  
pp. 95-106
Author(s):  
Julian De Hoog ◽  
Maneesha Perera ◽  
Peter Ilfrich ◽  
Saman Halgamuge

The rapid uptake of rooftop solar photovoltaic systems is introducing many challenges in the management of distribution networks, energy markets, and energy storage systems. Many of these problems can be alleviated with accurate short term solar power forecasts. However, forecasting the power output of distributed rooftop solar PV systems can be challenging, since many complex local factors can affect solar output. A common approach when forecasting such systems is to extract the daily seasonality from the time series using some form of seasonality model, and then forecast only the residuals that remain after seasonality extraction. In this work, we explore in detail the effectiveness of three commonly used seasonality models, and we propose a new one, called the "characteristic profile". We find that when seasonality models are integrated into the forecasting process, significant gains in forecast accuracy may be obtained - particularly for machine learning based approaches, which have a reduction in forecast error of 5-25%. Among the seasonality models, the characteristic profile demonstrates the highest forecast accuracy, resulting in reductions in forecast error of 8% or more compared to forecasting models that do not take seasonality into account. The benefits of this approach are particularly pronounced when forecasting solar PV systems that are curtailed, suffer from local shading, or consist of multiple sets of panels having different orientations and tilts. Our results are demonstrated on a high resolution dataset obtained from 258 sites in Western Australia over the course of a full year.


2020 ◽  
Vol 207 ◽  
pp. 02006
Author(s):  
Nicolay Komitov ◽  
Nicolay Shopov ◽  
Violeta Rasheva

The current century is characterized by an increasing use of renewable energy - wind farms, solar parks, bio fuels, etc. Climate change and rising prices of fossil fuels lead to increased investment in renewable energy. This raises the need to examine the impact of various factors on the efficiency of energy production from renewable energy sources. This is related to the development of adequate models and the implementation of appropriate computer systems to manage and control these processes. The present work presents the main aspects of the modelling of a building heating installation using renewable energy sources - a solar photovoltaic panel and a HHO gas generator. The additional energy needed to heat the building is provided by a pellet boiler. An energy balance of the studied building is made taking into account the external and internal temperatures and energy loss. The computer model was developed in order to build a system for process control in the building’s heating system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anas Sani Maihulla ◽  
Ibrahim Yusuf ◽  
Muhammad Salihu Isa

PurposeSolar photovoltaic (PV) is commonly used as a renewable energy source to provide electrical power to customers. This research establishes a method for testing the performance reliability of large grid-connected PV power systems. Solar PV can turn unrestricted amounts of sunlight into energy without releasing carbon dioxide or other contaminants into the atmosphere. Because of these advantages, large-scale solar PV generation has been increasingly incorporated into power grids to meet energy demand. The capability of the installation and the position of the PV are the most important considerations for a utility company when installing solar PV generation in their system. Because of the unpredictability of sunlight, the amount of solar penetration in a device is generally restricted by reliability constraints. PV power systems are made up of five PV modules, with three of them needing to be operational at the same time. In other words, three out of five. Then there is a charge controller and a battery bank with three batteries, two of which must be consecutively be in operation. i.e. two out of three. Inverter and two distributors, all of which were involved at the same time. i.e. two out of two. In order to evaluate real-world grid-connected PV networks, state enumeration is used. To measure the reliability of PV systems, a collection of reliability indices has been created. Furthermore, detailed sensitivity tests are carried out to examine the effect of various factors on the efficiency of PV power systems. Every module's test results on a realistic 10-kW PV system. To see how the model works in practice, many scenarios are considered. Tables and graphs are used to show the findings.Design/methodology/approachThe system of first-order differential equations is formulated and solved using Laplace transforms using regenerative point techniques. Several scenarios were examined to determine the impact of the model under consideration. The calculations were done with Maple 13 software.FindingsThe authors get availability, reliability, mean time to failure (MTTF), MTTF sensitivity and gain feature in this research. To measure the reliability of PV systems, a collection of reliability indices has been created. Furthermore, detailed sensitivity tests are carried out to examine the effect of various factors on the efficiency of PV power systems.Originality/valueThis is the authors' original copy of the paper. Because of the importance of the study, the references are well-cited. Nothing from any previously published articles or textbooks has been withdrawn.


Author(s):  
Mohamed A. M. Abdelsalam ◽  
Fahad Faraz Ahmad ◽  
Abdul-Kadir Hamid ◽  
Chaouki Ghenai ◽  
Oussama Rejeb ◽  
...  

<span>Dust is one of the significant constraints in utilizing solar photovoltaic systems under harsh weather conditions in the desert regions due to creating a shadow that blocks solar irradiance from reaching solar cells and consequently, significantly reducing their efficiency. In this research, experimental study was performed to comprehend the nature of dust particles and their impact on the electrical power output that is generated from azimuth tracking solar PV modules under Sharjah environmental conditions in winter season. According to laboratory experiments, the power losses are linearly related to the dust accumulated density on the surface of the solar panel with a slope of 1.27% per g/m2. The conducted Outdoor studies revealed that the absolute reduction in output power increased by 8.46% after 41 continuous days with one low-intensity rainy day. The linear relationship obtained from indoor experiments was applied later to estimate the dust deposited density on the outdoor setup. The results showed that a regular cleaning process every two weeks is recommended to maintain the performance and to avoid the soiling loss. This work will help engineers in the solar PV plants to forecast the dust impact and figure out the regularity of the cleaning process in case of single axis tracking systems.</span>


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2460 ◽  
Author(s):  
Evangelos Panos ◽  
Stavroula Margelou

The Swiss energy strategy aims at increasing electricity generation from solar power by 2050, to fulfil Switzerland’s commitments in the Paris Agreement. However, the market of single- and two-family houses is characterized by low return rates for excess power injected to the grid, and the installation of rooftop solar photovoltaic (PV) is sensitive to financial incentives. We assess the drivers influencing the diffusion of rooftop solar PV systems until 2050, by employing an agent-based model. An agent is a single- or two-family house, and its decision to invest depends on the economic profitability of the investment, the agent’s income, environmental benefits (injunctive social norm), awareness and knowledge about the solar PV technology, and the impact of the social network (descriptive social norm). The model includes a synthetic population of agents, statistically equivalent to the true population. We also investigate the impact of different support policies, technology learning rates, electricity prices, and discount rates on the investment decision. We find that the concept of prosumer emerges, mainly via self-consumption strategies. The diffusion process of rooftop solar PV systems in single- and two-family houses gains momentum in the future. In the near-term, PV deployment is sensitive to the profitability of the investment, while after the year 2030, peer effects play an increasing role in the agents’ investment decisions.


Author(s):  
Thirupathaiah M

Renewable Energy Sources (RES) such as Solar Photovoltaic (PV) became more popular over the last decade due to increasing environmental awareness and tax exemption policies on the solar PV systems. Integration of solar PV using various smart load management techniques will boost the efficiency of the overall system by reducing the massive cost of electricity bills. There is a need to find efficient and expert ways to enjoy these RES exclusively. Besides providing the connection between different loads, this system has the ability to collect information and execute control commands for the households by providing continuous observations and information about both load and supply profile, convincing the end user to take preventive measures by switching the auxiliary load to save power. This paper presents implementation of a low cost Solar based DC grid using Arduino. In the proposed system, the node which acts as a microcontroller reads the power consumption by the loads in each unit through current sensor. When the excess amount of power is consumed at particular unit, the controller makes the relay cut off the supply to the loads, which will be continuously displayed through LCD. This DC based power system helps to eliminate the requirement of converters systems, reducing converter cost, power system complexity, improve efficiency and reliability.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1474
Author(s):  
Imad Ibrik

The objective of this paper is to study the impact of using micro-grid solar photovoltaic (PV) systems in rural areas in the West Bank, Palestine. These systems may have the potential to provide rural electrification and encourage rural development, as PV panels are now becoming more financially attractive due to their falling costs. The implementation of solar PV systems in such areas improves social and communal services, water supply and agriculture, as well as other productive activities. It may also convert these communities into more environmentally sustainable ones. The present paper details two case studies from Palestine and shows the inter-relation between energy, water and food in rural areas to demonstrate how the availability of sustainable energy can ensure water availability, improve agricultural productivity and increase food security. Further, the paper attempts to evaluate the technical and economic impacts of the application of nexus approaches to Palestine’s rural areas. The results of this study are for a real implemented project and predict the long-term success of small, sustainable energy projects in developing rural areas in Palestine.


Sign in / Sign up

Export Citation Format

Share Document