scholarly journals A Novel Image Encryption Using Parity Based Visual Cryptography

2021 ◽  
Vol 26 (1) ◽  
pp. 135-142
Author(s):  
Kanusu Srinivasa Rao ◽  
Mandapati Sridhar

The current era is mainly focused on secured data transmission and every organization takes preventive measures to protect network’s private data. Among different techniques visual cryptography is a prominent one that that encrypts the visual information and decrypts secret using mechanical operations without any computation, but each share need pixel expansion. In the current work, we propose an Image encryption technique using (n, n) Visual cryptography based on simple operations without pixel expansion. The proposed novel technique gives an image encryption using visual cryptography based on Least significant bit (LSB) technique in spatial domain and parity mechanism using Exclusive-OR(XOR) operation. developed for encrypting grey scale image. Image encryption and decryption uses simple Boolean operations. The technique provides better quality of shares and recovers without any loss.

Author(s):  
R. Shanmuga Priya ◽  
A. Senthilkumar

The intent of this paper is to present some of the major things about visual cryptography for colour images. The idea behind this technique is quite simple and powerful. Visual cryptography deals with visual information like picture, printed text and written notes etc. Visual cryptography also called secret sharing. As the name implies visual cryptography which has a single secret image and more than one shadow images and provided for numerous users. Visual cryptography process depends on various measures such as accuracy, computational complexity, pixel expansion, contrast whether generated it is meaningless or meaningful. Encryption performed by image processing techniques and the decryption carried out by human visual system with the stacking images. Visual cryptography need not require any complicated cryptographic proficiency. So, the intruders or hackers get hard to hack the details programmatically. However, this papers deals with visual cryptography for colour images.


2021 ◽  
Vol 30 (1) ◽  
pp. 816-835
Author(s):  
Firas Mohammed Aswad ◽  
Ihsan Salman ◽  
Salama A. Mostafa

Abstract Visual cryptography is a cryptographic technique that allows visual information to be encrypted so that the human optical system can perform the decryption without any cryptographic computation. The halftone visual cryptography scheme (HVCS) is a type of visual cryptography (VC) that encodes the secret image into halftone images to produce secure and meaningful shares. However, the HVC scheme has many unsolved problems, such as pixel expansion, low contrast, cross-interference problem, and difficulty in managing share images. This article aims to enhance the visual quality and avoid the problems of cross-interference and pixel expansion of the share images. It introduces a novel optimization of color halftone visual cryptography (OCHVC) scheme by using two proposed techniques: hash codebook and construction techniques. The new techniques distribute the information pixels of a secret image into a halftone cover image randomly based on a bat optimization algorithm. The results show that these techniques have enhanced security levels and make the proposed OCHVC scheme more robust against different attacks. The OCHVC scheme achieves mean squared error (MSE) of 95.0%, peak signal-to-noise ratio (PSNR) of 28.3%, normalized cross correlation (NCC) of 99.4%, and universal quality index (UQI) of 99.3% on average for the six shares. Subsequently, the experiment results based on image quality metrics show improvement in size, visual quality, and security for retrieved secret images and meaningful share images of the OCHVC scheme. Comparing the proposed OCHVC with some related works shows that the OCHVC scheme is more effective and secure.


2013 ◽  
Vol 284-287 ◽  
pp. 2955-2960 ◽  
Author(s):  
Dong Hwan Kim ◽  
Yong Ri Piao ◽  
Sung Jin Cho ◽  
Seok Tae Kim

A new 3D image encryption method using integral imaging technology and maximum length cellular automata (MLCA) is proposed in this paper. First, an elemental image (EI) is generated by the integral imaging pickup process. The Wolfram rule is then selected and the state transition matrix, T, is created by MLCA. A random number matrix (RNM) is generated according to the MLCA rule. The generated EI and RNM are compared and pixel values are transitioned. Finally, a basis image is generated by another MLCA rule. The basis image is applied by performing a logic bit exclusive-OR (XOR) operation on the final encrypted image. This method changes the basic image information. Using pixel values to visualize image data gives better encryption results than the previous method. The robustness of the encryption method for lost data, including added noise or cropping attacks, was analyzed and the results of encryption method safety test experiments are presented using histograms.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 660 ◽  
Author(s):  
Xiaoqiang Zhang ◽  
Xuesong Wang

Large numbers of images are produced in many fields every day. The content security of digital images becomes an important issue for scientists and engineers. Inspired by the magic cube game, a three-dimensional (3D) permutation model is established to permute images, which includes three permutation modes, i.e., internal-row mode, internal-column mode, and external mode. To protect the image content on the Internet, a novel multiple-image encryption symmetric algorithm (block cipher) with the 3D permutation model and the chaotic system is proposed. First, the chaotic sequences and chaotic images are generated by chaotic systems. Second, the sender permutes the plain images by the 3D permutation model. Lastly, the sender performs the exclusive OR operation on permuted images. The simulation and algorithm comparisons display that the proposed algorithm possesses desirable encryption images, high security, and efficiency.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3801-3808

‘Privacy, privacy everywhere but not a safety method to implement it’: a harsh reality of today’s world. With the precipitation of more data (2 x 1019 bits of data is created in every 86400 seconds) in computer networks, involvement of meta-data in the form of images is essential. To keep data safe and secure in order to inculcate privacy, to eradicate any kind of eavesdropping, and to maintain confidentiality, integrity and availability of it, certain security measures are needed to make in account for. So in order to make it available, we required a technique through which we can securely transfer any kind of data over a network. In practise the information security can be achieved either by using Cryptography or Steganography. The process described in this paper is not a mediocre it is more scrupulous towards the security because it involves image encryption, steganography and image stitching. Initially we are encrypting an image using Blowfish algorithm then we are embedding the secret text into this encrypted image by modifying the least significant bit (LSB) of the image by our data. Moreover, to enhance the privacy and security we are stitching the above resultant image with the red, green and blue (RGB) components of a host image and thereby producing an image more secure than the one which the existing systems can form for data transmission..


Author(s):  
Sabyasachi Pramanik ◽  
Ramkrishna Ghosh ◽  
Mangesh M. Ghonge ◽  
Vipul Narayan ◽  
Mudita Sinha ◽  
...  

In the information technology community, communication is a vital issue. And image transfer creates a major role in the communication of data through various insecure channels. Security concerns may forestall the direct sharing of information and how these different gatherings cooperatively direct data mining without penetrating information security presents a challenge. Cryptography includes changing over a message text into an unintelligible figure and steganography inserts message into a spread media and shroud its reality. Both these plans are successfully actualized in images. To facilitate a safer transfer of image, many cryptosystems have been proposed for the image encryption scheme. This chapter proposes an innovative image encryption method that is quicker than the current researches. The secret key is encrypted using an asymmetric cryptographic algorithm and it is embedded in the ciphered image using the LSB technique. Statistical analysis of the proposed approach shows that the researcher's approach is faster and has optimal accuracy.


2016 ◽  
Vol 3 (1) ◽  
pp. 20-35 ◽  
Author(s):  
Dhiraj Pandey ◽  
U. S. Rawat

Progressive Visual Cryptography (PVC) is quite suitable for sharing sensitive digital data.Previous research on PVC, such as Fang et al. (2006) and W.P.Fang et al.(2008) were all carrying pixel-expansion problem and also gives a poor visual quality on the recovered stacked image. Recently, Hou&Quan (2011) have developed a progressive scheme for secret sharing. It is observed that shares generated by the scheme are free from pixel expansion problem, but shares are not fully secure. In this paper, a new progressive sharing algorithm based on logistic chaotic map has been proposed to overcome the said limitation of Hou (2011) scheme. The irregular outputs of the logistic map are used to encode a secret digital information carrying image. The performance of the algorithm in the scheme of Hou (2011) is critically analyzed and compared with new suggested scheme. Empirical results are presented to showcase the performance of the authors' proposed scheme in terms of its effectiveness (imperceptibility and security) and feasibility.


2020 ◽  
Vol 10 (16) ◽  
pp. 5691
Author(s):  
Hanmeng Wu ◽  
Jun Wang ◽  
Ziyi Zhang ◽  
Xudong Chen ◽  
Zheng Zhu

A multi-image encryption with super-large-capacity is proposed by using spherical diffraction and filtering diffusion. In the proposed method, initial images are processed sequentially by filtering diffusion and chaos scrambling. The images are combined into one image using XOR operation. The combined image is encrypted by improved equal modulus decomposition after spherical diffraction. There are three main contributions of the proposed method—(1) resisting phase-retrieval attack due to the asymmetry of spherical diffraction; (2) high flexibility of decrypting images individually; and (3) super-large encryption capacity of the product of image resolution and grayscale level, which is the most significant advantage. The feasibility and effectiveness of the proposed encryption are verified by numerical simulation results.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Jiming Zheng ◽  
Zheng Luo ◽  
Zhirui Tang

In this paper, an improved two-dimensional logistic-sine coupling map (N2D-LSCM) and an improved Henon map (NHenon) are proposed. Furthermore, by combining N2D-LSCM and NHenon map, an image encryption algorithm is proposed based on these two chaotic systems and DNA coding. The chaotic sequences generated by N2D-LSCM are used as the parameters of NHenon. In the scrambling stage, DNA encoding is carried out for pixels after scrambling by two chaotic sequences generated by N2D-LSCM; in the stage of diffusion, DNA random coding acts on random matrix obtained by two chaotic sequences generated by NHenon, and DNA XOR operation is carried out with the image obtained in the scrambling stage to diffuse. Compared with other 2D map for image encryption algorithm, this algorithm exhibits good security and holds high efficiency.


Sign in / Sign up

Export Citation Format

Share Document