scholarly journals Design an Optimal Fractional Order PID Controller Based on New Algorithms and a Fuzzy Logic Controller to Regulate Type 1 Diabetes Patients

2021 ◽  
Vol 54 (3) ◽  
pp. 381-394
Author(s):  
Salah Benzian ◽  
Aissa Ameur ◽  
Aissa Rebai

Diabetes is one of the most important diseases that researchers have focused on in scientific research since the time, because of the seriousness of this disease if it is not properly dealt with, especially with the emergence of some global epidemics such as Corona Virus (COVID 19), as the pancreas is the organ responsible for regulating sugar in the blood by secreting the insulin enzyme, insulin is widely used to control blood sugar. Therefore, it is important that the required insulin value is constant and controlled. The aim of this study is to control the blood glucose value that is achieved as a desired value and to maintain it as a constant value using a proportional, integral, and derivative control unit (FOPID) fractional order of the control parameters. In this research, the new control unit is applied to Bergman's mathematical model as a non-linear and simple model that simulates the mechanism of the interaction of glucose and insulin in the blood, and based on this, a closed control loop was designed to regulate the level of blood sugar to be an automatic control of blood glucose using the measured data from Special sensor. The contribution in this scientific paper is to define the (FOPID) parameters according to the closed loop responses of the system, and these parameters were adjusted using new meta-heuristic algorithms including the Invasive Weed Optimization (IWO), the PSO Particle Swarm optimization, the Genetic Algorithm (GA), The bat optimization algorithm (BA) and (ACO). As a result, the results of the five modern algorithms were compared based on several criteria to find out which one was better using MATLAB / SIMULINK simulation. It was found that the IWO algorithm performs better than PSO. The simulation results of the closed-loop system of this controller at the time of settling, overshoot and control inputs indicate very positive results compared to previous results. In addition, a new method has been proposed which is to design a pump in the form of a valve to control insulin pumping by controlling it with the fuzzy logic control unit, which in turn, we obtained better results, compared to the results of other previous studies.

2021 ◽  
Vol 297 ◽  
pp. 01033
Author(s):  
Iliass Rkik ◽  
Mohamed El khayat ◽  
Hafsa Hamidane ◽  
Abdelali Ed-Dahhak ◽  
Mohammed Guerbaoui ◽  
...  

This paper presents the modeling of an intelligent combined MPPT and Lead-Acid battery charger controller for standalone solar photovoltaic systems. It involves the control of a DC/DC buck converter through a control unit, which contains two cascaded fuzzy logic controllers (FLC), that adjusts the required duty cycle of the converter according to the state of charge and the three stage lead acid battery charging system. The first fuzzy logic controller (FLC1) consists of an MPPT controller to extract the maximum power produced by the PV array, while the second fuzzy controller (FLC2) is aimed to control the voltage across the battery to ensure the three stage charging approach. This solution of employing two distinct cascaded fuzzy controllers surmounts the drawbacks of the classical chargers in which the voltage provided to the lead acid battery is not constant owing to the effects of the MPPT control which can automatically damage the battery. Thus, the suggested control strategy has the benefit of extracting the full power against the PV array, avoiding battery damage incurred by variable MPPT voltage and increasing the battery’s lifespan.


Author(s):  
Amjed A. Al-mousa ◽  
Ali H. Nayfeh ◽  
Pushkin Kachroo

Abstract Rotary cranes (tower cranes) are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them became difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control preferable. In this work a fuzzy logic controller is introduced with the idea of split-horizon; that is, fuzzy inference engines (FIE) are used for tracking the position and others are used for damping the load oscillations. The controller consists of two independent controllers: radial and rotational. Each of these controllers has two fuzzy inference engines (FTEs). Computer simulations are used to verify the performance of the controller. Three simulation cases are introduced: radial, compound, and damping. The results from the simulations show that the fuzzy controller is capable of keeping the load-oscillation angles small throughout the maneuvers while completing them in a relatively reasonable time.


2021 ◽  
Vol 13 (18) ◽  
pp. 10216
Author(s):  
Youcef Belkhier ◽  
Nasim Ullah ◽  
Ahmad Aziz Al Alahmadi

Permanent magnet synchronous generator (PMSG) with a back-to-back power converter is one of the commonly used technologies in tidal power generation schemes. However, the nonlinear dynamics and time-varying parameters of this kind of conversion system make the controller computation a challenging task. In the present paper, a novel intelligent control method based on the passivity concept with a simple structure is proposed. This proposed strategy consists of passivity-based speed control (PBSC) combined with a fuzzy logic method to address the robustness problems faced by conventional control techniques such as proportional-integral (PI) control. The proposed method extracts the maximum power from the tidal energy, compensates for the uncertainty in a damped way where the entire dynamics of the PMSG are considered when designing the control law. The fuzzy logic controller is selected, which makes the proposed strategy intelligent to compute the damping gains to make the closed-loop passive and approximate the unstructured dynamics of the PMSG. Thus, the robustness property of the closed-loop system is considerably increased. The regulation of DC voltage and reactive power to their desired values are the principal objectives of the present work. The proposed method is used to control the machine-side converter (MSC), while a conventional PI method is adopted to control the grid-side converter (GSC). Dynamic simulations show that the DC voltage and reactive power errors are extremely reduced with the proposed strategy; ±0.002 for the DC-link voltage and ±0.000015 in the case of the reactive power. Moreover, the lowest steady-state error and better convergence criterion are shown by the proposed control (0.3 × 10−3 s). Generally, the proposed candidate offers high robustness, fast speed convergence, and high efficiency over the other benchmark nonlinear strategies. Moreover, the proposed controller was also validated in a processor in the loop (PIL) experiment using Texas Instruments (TI) Launchpad.


Author(s):  
Sinan Unsal ◽  
Ibrahim Aliskan

There are many design parameters in the structure of fuzzy logic controllers. Conventional methods that don't have a systematic approach are often used in determining of these parameters. However, setting the controller parameters in this way leads to long experiments and this takes a lot of time. For this reason, design parameters of the fuzzy logic controller are usually determined by using heuristic algorithms. Because, heuristic algorithms can offer solutions that are very close to the optimal solution for the problems where exact solution cannot be obtained. In this study, output membership functions of a fuzzy logic controller are optimized using particle swarm optimization and genetic algorithm. Design and optimization stages are explained in detail and results are compared with each other.


2013 ◽  
Vol 15 (8) ◽  
pp. 628-633 ◽  
Author(s):  
Richard Mauseth ◽  
Irl B. Hirsch ◽  
Jennifer Bollyky ◽  
Robert Kircher ◽  
Don Matheson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document