Using Taguchi method & response surface methodology for examination of surface roughness

2018 ◽  
Vol 87 (1) ◽  
pp. 42-54
Author(s):  
Yallamati Abshalomu ◽  
Vinjavarapu Sanakararao ◽  
Ashok Nanduri
Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 900 ◽  
Author(s):  
Sonia Ezeddini ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar ◽  
Sahbi Ben Salem

This work presents a comprehensive research using the Taguchi method and response surface methodology (RSM) to predict surface roughness parameters in wire electrical discharge machining (WEDM) manufacturing for a novel Ti–Al intermetallic based composite that was developed at Supmeca, a composite design laboratory for aeronautical applications in Paris, France. At the first stage, a detailed microstructure analysis was carried out on this composite. After that, the cutting parameters of the WEDM process were determined: Start-up voltage U, Pulse-on-time Ton, speed advance S and flushing pressure p were selected to find out their effects on surface roughness Ra. In the second stage, analyses of variance (ANOVA) were used as the statistical method to define the significance of the machining parameters. After that, an integrated method combining the Taguchi method and the response surface methodology (RSM) was used to develop a predictive model of the finish surface. The microstructure of the surface and subsurface of the cut edge, the micro-cracks, debris and craters and surface roughness of the specimens cut at the altered conditions were evaluated by scanning electron microscopy (SEM) and 3D-Surfscan.


2018 ◽  
Vol 773 ◽  
pp. 220-224 ◽  
Author(s):  
Ngoc Chien Vu ◽  
Shyh Chour Huang ◽  
Huu That Nguyen

Cutting forces and surface roughness are important output parameters affecting the machining performance and quality of any machined surface in hard milling. In order to obtain the best surface quality and highest productivity, the input-cutting parameters need be considered and chosen properly whenever hard milling is involved. Therefore, in this paper, an attempt is made to conduct the multi-objective optimization of the surface roughness (Ra) and the resultant cutting force (Ft) in hard milling of SKD61 steel by Taguchi method and Response Surface Methodology (RSM). Values of the input parameters for milling tests are chosen through the stability lobe diagram of a machine tool simulated by the use of Cutpro software. The Taguchi method is used for designing all of the milling experiments. The values of Ra and Ft are measured by a Surftest SJ-400 and a dynamometer, respectively, and then analysis of variance is conducted to find out the effect of machining process conditions on Ra and Ft. In order to get the low Ft and Ra, a multi-objective optimization is implemented with the use of the desirability function. The results reveal that the optimized machining conditions for Ra and Ft are a cutting speed of 100 m/min, a feed rate of 0.015 mm/tooth, and a depth of cut of 0.44 mm, with predicted Ra of 0.206 µm and Ft of 66.58 N.


2017 ◽  
Vol 15 (3) ◽  
pp. 283-296 ◽  
Author(s):  
Aezhisai Vallavi Muthusamy Subramanian ◽  
Mohan Das Gandhi Nachimuthu ◽  
Velmurugan Cinnasamy

2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


Author(s):  
TS Senthilkumar ◽  
R Muralikannan ◽  
T Ramkumar ◽  
S Senthil Kumar

A substantially developed machining process, namely wire electrical discharge machining (WEDM), is used to machine complex shapes with high accuracy. This existent work investigates the optimization of the process parameters of wire electrical discharge machining, such as pulse on time ( Ton), peak current ( I), and gap voltage ( V), to analyze the output performance, such as kerf width and surface roughness, of AA 4032–TiC metal matrix composite using response surface methodology. The metal matrix composite was developed by handling the stir casting system. Response surface methodology is implemented through the Box–Behnken design to reduce experiments and design a mathematical model for the responses. The Box–Behnken design was conducted at a confident level of 99.5%, and a mathematical model was established for the responses, especially kerf width and surface roughness. Analysis of variance table was demarcated to check the cogency of the established model and determine the significant process. Surface roughness attains a maximum value at a high peak current value because high thermal energy was released, leading to poor surface finish. A validation test was directed between the predicted value and the actual value; however, the deviation is insignificant. Moreover, a confirmation test was handled for predicted and experimental values, and a minimal error was 2.3% and 2.12% for kerf width and surface roughness, respectively. Furthermore, the size of the crater, globules, microvoids, and microcracks were increased by amplifying the pulse on time.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ekhaesomi A Agbonoga ◽  
Oyewole Adedipe ◽  
Uzoma G Okoro ◽  
Fidelis J Usman ◽  
Kafayat T Obanimomo ◽  
...  

This study investigated the effects of process parameters of plasma arc cutting (PAC) of low carbon steel material using analysis of variance. Three process parameters, cutting speed, cutting current and gas pressure were considered and experiments were conducted based on response surface methodology (RSM) via the box-Behnken approach. Process responses viz. surface roughness (Ra) and kerf width of cut surface were measured for each experimental run. Analysis of Variance (ANOVA) was performed to get the contribution of process parameters on responses. Cutting current has the most significant effect of 33.43% on the surface roughness and gas pressure has the most significant effect on  kerf width of  41.99% . For minimum surface roughness and minimum kerf width, process parameters were optimized using the RSM. Keywords: Cutting speed, cutting current, gas pressure,   surface roughness, kerf width


Sign in / Sign up

Export Citation Format

Share Document