scholarly journals A Backpropagation Neural Network-based Flexural-tensile Strength Prediction Model for Asphalt Mixture in Cold Regions under Cyclic Thermal Stress

2019 ◽  
Vol 6 (3) ◽  
pp. 433-436
Author(s):  
Yupeng Qin ◽  
Chuanfeng Zheng
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2998
Author(s):  
Xinyong Zhang ◽  
Liwei Sun

Fit of the highly nonlinear functional relationship between input variables and output response is important and challenging for the optical machine structure optimization design process. The backpropagation neural network method based on particle swarm optimization and Bayesian regularization algorithms (called BMPB) is proposed to solve this problem. A prediction model of the mass and first-order modal frequency of the supporting structure is developed using the supporting structure as an example. The first-order modal frequency is used as the constraint condition to optimize the lightweight design of the supporting structure’s mass. Results show that the prediction model has more than 99% accuracy in predicting the mass and the first-order modal frequency of the supporting structure, and converges quickly in the supporting structure’s mass-optimization process. The supporting structure results demonstrate the advantages of the method proposed in the article in terms of high accuracy and efficiency. The study in this paper provides an effective method for the optimized design of optical machine structures.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chaohui Wang ◽  
Songyuan Tan ◽  
Qian Chen ◽  
Jiguo Han ◽  
Liang Song ◽  
...  

Dynamic modulus is a key evaluation index of the high-modulus asphalt mixture, but it is relatively difficult to test and collect its data. The purpose is to achieve the accurate prediction of the dynamic modulus of the high-modulus asphalt mixture and further optimize the design process of the high-modulus asphalt mixture. Five high-temperature performance indexes of high-modulus asphalt and its mixture were selected. The correlation between the above five indexes and the dynamic modulus of the high-modulus asphalt mixture was analyzed. On this basis, the dynamic modulus prediction models of the high-modulus asphalt mixture based on small sample data were established by multiple regression, general regression neural network (GRNN), and support vector machine (SVM) neural network. According to parameter adjustment and cross-validation, the output stability and accuracy of different prediction models were compared and evaluated. The most effective prediction model was recommended. The results show that the SVM model has more significant prediction accuracy and output stability than the multiple regression model and the GRNN model. Its prediction error was 0.98–9.71%. Compared with the other two models, the prediction error of the SVM model declined by 0.50–11.96% and 3.76–13.44%. The SVM neural network was recommended as the dynamic modulus prediction model of the high-modulus asphalt mixture.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yao Lu ◽  
John Panneerselvam ◽  
Lu Liu ◽  
Yan Wu

Given the increasing deployments of Cloud datacentres and the excessive usage of server resources, their associated energy and environmental implications are also increasing at an alarming rate. Cloud service providers are under immense pressure to significantly reduce both such implications for promoting green computing. Maintaining the desired level of Quality of Service (QoS) without violating the Service Level Agreement (SLA), whilst attempting to reduce the usage of the datacentre resources is an obvious challenge for the Cloud service providers. Scaling the level of active server resources in accordance with the predicted incoming workloads is one possible way of reducing the undesirable energy consumption of the active resources without affecting the performance quality. To this end, this paper analyzes the dynamic characteristics of the Cloud workloads and defines a hierarchy for the latency sensitivity levels of the Cloud workloads. Further, a novel workload prediction model for energy efficient Cloud Computing is proposed, named RVLBPNN (Rand Variable Learning Rate Backpropagation Neural Network) based on BPNN (Backpropagation Neural Network) algorithm. Experiments evaluating the prediction accuracy of the proposed prediction model demonstrate that RVLBPNN achieves an improved prediction accuracy compared to the HMM and Naïve Bayes Classifier models by a considerable margin.


2009 ◽  
Vol 42 (23) ◽  
pp. 255-260 ◽  
Author(s):  
Yong Y. Yang ◽  
Mahdi Mahfouf ◽  
Derek A. Linkens ◽  
Qian Zhang

Sign in / Sign up

Export Citation Format

Share Document