scholarly journals Viscoelastic Mechanical Model of Asphalt Concrete Considering the Influence of Characteristic Parameter of Fiber Content

2021 ◽  
Vol 31 (5) ◽  
pp. 283-290
Author(s):  
Chunshui Huang ◽  
Danying Gao ◽  
Peibo You

This paper carries out bending creep tests on polyester fiber-reinforced asphalt concrete beams, and investigates how the volume ratio and aspect ratio of the fibers influence the parameters of viscoelastic mechanical model and the viscoelastic performance of the asphalt concrete. The results show that: with the growing volume ratio and aspect ratio of the fibers, the midspan deflection and bottom flexural-tensile strain of asphalt concrete beams first dropped and then rose over time; the characteristic parameter of fiber content (FCCP) could reflect the overall effects of the volume ratio and aspect ratio of the fibers. On this basis, a viscoelastic mechanical model was established for the asphalt concrete in the light of the influence of FCCP. The test and theoretical results show that, in our tests, the optimal volume ratio of fibers, optimal aspect ratio of fibers, and optimal FCCP are 0.348, 324, and 1.128 for polyester fiber-reinforced asphalt concrete.

Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 155
Author(s):  
Xun Qian Xu ◽  
Wei Yang ◽  
Hong Liang Xiang ◽  
Jian Bo Wang ◽  
Xiao Yang

The crack initiation and life prediction of fiber-reinforced asphalt concrete (FRAC) surfacing for steel bridge decks under a cyclic vehicle load are analyzed from the perspective of damage mechanics. The damage field and the stress and strain field evolution rule of a composite beam in fatigue test are studied, and a fatigue failure criterion is proposed for steel deck FRAC surfacing. Bending fatigue tests are performed on composite beams composed of a steel deck and polyacrylonitrile (PAN)-fiber-reinforced Gussasphalt (GA), i.e., GA-PAN, concrete surfacing under different fiber content and temperature conditions. The damage evolution characteristics of GA-PAN concrete surfacing over the steel deck with different fiber lengths and volume ratios are predicted by analyzing the fatigue life equations. The results show that the steel bridge deck FRAC surfacing model can reflect the comprehensive influence of the fiber content and length on the fatigue performance of steel bridge AC. Specifically, a lower temperature results in the fiber more synergistically affecting the fatigue resistance of AC. Theoretically, the service performance of asphalt concrete increases with the increase of fiber length and content. The optimum fiber length and volume ratio of GA-PAN are found to be 9 mm and 0.46–0.48%, respectively, considering the construction workability.


2019 ◽  
Vol 5 (1) ◽  
pp. 29 ◽  
Author(s):  
Nurullah Soylu ◽  
Ahmet Ferhat Bingöl

SIFCON (Slurry Infiltrated Fiber Reinforced Concrete) is a composite which occur hardening of the matrix phase, consists of cement, water, mineral additives, fine sand, water reducing plasticizer, and reinforced with high volume fiber (5–20%). The main difference from the high strength concrete (HSC) is the ductile behaviour at failure. However, the brittleness increases with the strength increase in HSC, SIFCON has a ductile behaviour because of the high volume fiber content, low permeability, high durability. Despite fiber content is 2-3% in fiber reinforced concrete, fiber content may be ten times more in SIFCON and ductility is gained. This concrete is suggested to be used in military buildings against explosion, industrial grounds, airports, and bridge feet. In this study, in order to investigate the compressive and flexural strengths of SIFCON, the aspect ratio and fiber volume of steel fibers were chosen as variable and the effects of these parameters on compressive and flexural strengths were investigated. In the study, steel fibers with aspect ratio of 40, 55, 65, and 80 were used in 0, 4, 8 and 12% ratios. The water/binder ratio was kept constant at 0.35. Silica fume is used 10% and water-reducing plasticizer is used 1.5% of cement by weight. 7 and 28 days cured samples were subjected to compressive and flexural tests and the results were compared. As a result of the tests carried out, increases in both the compressive and flexural strengths of SIFCON specimens were determined with increasing fiber volume up to 8%. Strength reductions were observed at higher ratios. In cases where the fiber volume is too high, it has been seen that the strengths were decreased. The reason of strength reduction can be explained by the difficulty of passing ability of mortar between the fibers. The highest strengths were obtained from fibers with the aspect ratio of 80. Increase in the aspect ratio as well as increases in compressive and flexural strengths have been found.


2011 ◽  
Vol 243-249 ◽  
pp. 1058-1061
Author(s):  
Jun Wang ◽  
Huan Jun Ye ◽  
Zhi Wei Sun ◽  
Wei Chen

In order to research the influence of basalt fiber on the crack and deflection of the reinforced concrete beams, four basalt fiber reinforced concrete beams with the key parameters of length which were 12mm and 30mm and volume ratio which were 0.1% and 0.2% were designed and made. The test data was obtained through the bending experiment and the comparison with the common reinforced concrete beam. The result shows that it is obvious to control the crack and deflection of the test beams with the increasing of basalt fiber characteristic parameters. The calculation method of the maximum crack width of the basalt fiber reinforced concrete beams were presented based on the method of common concrete beam, which can provide the theoretical basis for the engineering practice.


2014 ◽  
Vol 584-586 ◽  
pp. 899-903
Author(s):  
Wei Chen ◽  
Xiang Peng Li ◽  
Ting Ting Chen ◽  
Xiao Yang Wang ◽  
Chao Chao Ma

In order to research the influence of the shear capacity of reinforced concrete beam with the incorporation of basalt fiber, four basalt fiber reinforced concrete beams with parameters of length and volume ratio were designed and made. The fiber lengths were 12mm and 30mm, and the volume ratios were 1‰ and 2‰. The test data of basalt fiber reinforced concrete was obtained through the shear experiments and comparison with the common reinforced concrete beam. The results of the experiment show that the cracking load of the basalt fiber reinforced concrete beam increase obviously with the growing of fiber characteristic parameters, and effectively reduce the diagonal crack width.


2012 ◽  
Vol 729 ◽  
pp. 302-307 ◽  
Author(s):  
Péter Bakonyi ◽  
László Mihály Vas

In this paper tensile and creep tests were performed on polypropylene (PP) and its glass fiber reinforced composites. The tensile tests were carried out on 6 different glass fiber content reinforced PP composites (0, 5, 10, 20, 30 and 40%) while the creep tests were performed on the unreinforced and 30% and 40% fiber reinforced ones of industrial importance. 50 N/s constant force rate was used until the specimen failed (tensile test) or the preset load level was reached (creep test). The applied load levels for the creep experiments were determined as given ratios of the average breaking force. The tensile breaking strain and tensile strength versus fiber content relationship were analyzed and described by empirical formulas based on the correction and averaging procedure developed.


Sign in / Sign up

Export Citation Format

Share Document