Prediction of global solar radiation on the horizontal area with the effect of relative humidity part: I

2018 ◽  
Vol 61+1 (2) ◽  
pp. 115-118 ◽  
Author(s):  
Foued Chabane ◽  
Imene Laznek ◽  
Djamel Bensahal
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Haixiang Zang ◽  
Qingshan Xu ◽  
Pengwei Du ◽  
Katsuhiro Ichiyanagi

A modified typical meteorological year (TMY) method is proposed for generating TMY from practical measured weather data. A total of eleven weather indices and novel assigned weighting factors are applied in the processing of forming the TMY database. TMYs of 35 cities in China are generated based on the latest and accurate measured weather data (dry bulb temperature, relative humidity, wind velocity, atmospheric pressure, and daily global solar radiation) in the period of 1994–2010. The TMY data and typical solar radiation data are also investigated and analyzed in this paper, which are important in the utilizations of solar energy systems.


Author(s):  
D. O. Akpootu ◽  
B. I. Tijjani ◽  
U. M. Gana

Time series and empirical orthogonal transformation analysis was carried out for four (4) selected tropical sites, which are situated across the four different climatic zones, viz. Sahelian, Midland, Guinea savannah and Coastal region in Nigeria using measured monthly average daily global solar radiation, maximum and minimum temperatures, sunshine hours, rainfall, wind speed, cloud cover and relative humidity meteorological data during the period of thirty one years (1980-2010). Seasonal Auto Regressive Integrated Moving Average (ARIMA) models were developed along with their respective statistical indicators of coefficient of determination (R2), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). The results indicated that the models were found suitable for one step ahead global solar radiation forecast for the studied locations. Furthermore, the results of the time series analysis revealed that the model type for all the meteorological parameters show a combination of simple seasonal with one or more of either ARIMA, winter’s additive and winter’s multiplicative with the level been more significant as compared to the trend and seasonal variations for the exponential smoothing model parameters in all the locations. The results of the correlation matrix revealed that the global solar radiation is more correlated to the mean temperature except for Akure where it is more correlated to the sunshine hours; the mean temperature is more correlated to the global solar radiation; the rainfall is more correlated to the relative humidity and the relative humidity is more correlated to the rainfall in all the locations. The results of the component matrix revealed that three seasons are identified in Nguru located in the Sahelian region namely, the rainy, the cool dry (harmattan) and the hot dry seasons while in Zaria, Makurdi and Akure located in the Midland, Guinea savannah and Coastal zones two distinct seasons are identified namely, the rainy and dry seasons.


2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Ali A. Sabziparvar

Using sunshine duration, cloud cover, relative humidity, average of maximum temperature, and ground albedo as the input of several radiation models, the monthly average daily solar radiation on horizontal surface in various coastal cities of the South (25.23∘N) and the North (38.42∘N) of Iran are estimated. Several radiation models are tested and further are revised by taking into consideration the effects of relative humidity, ground albedo, and Sun-Earth distance. Model validation is performed by using up to 13 years (1988–2000) of daily solar observations. Errors are calculated using MBE, MABE, MPE, and RMSE statistical criteria (see nomenclature) and further a general formula which estimates the global radiation in different climates of coastal regions is suggested. The proposed method shows a good agreement (less than7%deviation) with the long-term pyranometric data. In comparison with other works done so far, the suggested method performs a higher degree of accuracy for those of two regions. The model results can be extended to other locations in coastal regions where solar data are not available.


2020 ◽  
Vol 6 (1) ◽  
pp. 131-138
Author(s):  
B. P. Pant ◽  
B. Budha ◽  
K. N. Poudyal ◽  
B. Acharya

This study is mainly concerned with the performance of various single and multiple meteorological parameter models to estimate the global solar radiation (GSR) on the horizontal site of Kathmandu, Nepal located at 27.69° N, 85.35° E at an altitude of 1338 meter from the sea level. The main concern of this research is to evaluate the preciseness and appropriateness of various models and to do that we have implemented diverse statistical tests. The results exhibit that all the used models have a good correlation for the determination of monthly averaged daily global solar radiation on the horizontal site of Kathmandu. Nonetheless, the sunshine hour and temperature-based model have shown a better agreement between the measured and estimated GSR of the studied site with RMSE and R2 values 0.88 and 0.87, respectively. The value of correlation coefficients a, b and c are found to be 0.42, 0.53, and 0.01, successively.


Sign in / Sign up

Export Citation Format

Share Document