sunshine hour
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 13)

H-INDEX

6
(FIVE YEARS 0)

MAUSAM ◽  
2021 ◽  
Vol 64 (4) ◽  
pp. 671-680
Author(s):  
SUKUMAR LALAROY ◽  
SANJIB BANDYOPADHYAY ◽  
SWETA DAS

bl 'kks/k i= dk mÌs'; Hkkjrh; rVh; LFkku vFkkZr~ if'peh caxky ds vyhiqj ¼dksydkrk½ esa izsf{kr HkweaMyh; lkSj fofdj.k dh enn ls gjxzhCl fofdj.k QkWewZyk ls rkjh[kokj la'kksf/kr KRS irk djuk gS ftlls fd vkxs ;fn U;wure rkieku ¼Tmin½ Kkr gks rks vf/kdre rkieku ¼Tmax½ dk iwokZuqeku nsus esa vFkok blds foijhr] mi;ksx fd;k tk ldsA HkweaMyh; lkSj fofdj.k ds chp lglaca/k dh x.kuk rkjh[kokj fd, x, /kwi ds ?kaVkokj  vk¡dM+ksa ds vkSlr ds mi;ksx ftlesa vkaXLVªkse izsLdkWV QkewZyk ls izkIr fu;rkad  as = 0-25 vkSj bs = 0-5 gS] ls dh xbZZ gSA blesa izsf{kr fd, x, HkweaMyh; lkSj fofdj.k vkadM+ksa dk v/;;u fd;k x;k gSA ;g fuf'pr :i  ls dgk tkrk gS fd vkaxLVªkse izsldkWV QkewZyk HkweaMyh; lkSj fofdj.k dk lVhd vkdyu djrk gS vkSj ;g lgh ik;k tkrk gSA bl 'kks/k i= esa gjxzhCl fofdj.k QkewZyk ¼ftles KRS = 0-19 fy;k x;k gS½ ls rkjh[kokj izkIr fd, x, vf/kdre rkiekuksa rFkk U;wure rkiekuksa ds vkSlr ¼vkadM+s Hkkjr ekSle foKku foHkkx ds vyhiqj] dksydkrk ftyk & 24 ijxuk ds dk;kZy; ls izkIr½ dk mi;ksx djds HkweaMyh; lkSj fofdj.k ds chp lglaca/k dh x.kuk dh xbZ gS vkSj bldk v/;;u izsf{kr HkweaMyh; lkSj fofdj.k ds lkFk Hkh fd;k x;k gSA rkjh[kokj la'kksf/kr KRS dh x.kuk gjxzhCl fofdj.k QkewZyk ls dh xbZA blesa HkweaMyh; lkSj fofdj.k ds izsf{kr vkadM+ksa] rkjh[kokj vf/kdre rkiekuksa vkSj U;wure rkiekuksa ds vkSlr mi;ksx esa fy, x, gSaA bls fdlh LVs'ku ds vf/kdre rkiekuksa  vkSj U;wure rkieku vkadMksa ds rkjh[kokj KRS  ds mi;ksx ds }kjk vkl ikl ds {ks=ksa ds ok"iksRltZu ds fy, HkweaMyh; lkSj fofdj.k dk vkdyu djus ds fy, Hkh mi;ksx esa yk;k tk ldrk gSA  The objective of this study is to find the date wise corrected KRS from the Hargreaves Radiation formula with the help of observed global solar radiation for the Indian coastal location namely Alipore (Kolkata) in West Bengal so that subsequently it can be used for predicting maximum temperature Tmax if minimum temperature Tmin is known or vice-versa. The correlation between the global solar radiation calculated by using date wise average sunshine hour data with constants as = 0.25 and bs = 0.5, from Angstrom Prescott formula with the observed global solar radiation data was studied. The assertion that the Angstrom Prescott formula gives nearly accurate estimation of global solar radiation has been found to be correct. Correlation between the global solar radiation calculated by using date wise average of Tmax and Tmin (sourced from IMD located at Alipore, Kolkata, District - South 24 parganas) from Hargreaves Radiation formula (taking KRS  = 0.19 ) with the observed global solar radiation data was also  studied. Date wise corrected  KRS by Hargreaves Radiation formula was computed using the observed data of global solar radiation, date wise average of maximum temperature Tmax and minimum temperature Tmin. The date wise corrected KRS can be used for better prediction of Tmax and Tmin. Also it can be used for estimation of global solar radiation for reference evapo-transpiration of the neighbourhood areas by utilizing the date wise KRS with the Tmax and Tmin of the station.


MAUSAM ◽  
2021 ◽  
Vol 62 (1) ◽  
pp. 85-90
Author(s):  
A. MUGRAPAN ◽  
SUBBARAYAN SIVAPRAKASAN ◽  
S. MOHAN

The objective of this study is to evaluate the performance of the Hargreaves’ Radiation formula in estimating daily solar radiation for an Indian coastal location namely Annamalainagar in Tamilnadu State. Daily solar radiation by Hargreaves’ Radiation formula was computed using the observed data of maximum temperature, Tmax and minimum temperature, Tmin, sourced from the India Meteorological Observatory located at Annamalainagar and employing the adjustment coefficient KRS of 0.19. Daily solar radiation was also computed using Angstrom-Prescott formula with the measured daily sunshine hour data. The differences between the daily solar radiation values computed using the formulae were more pronounced in year around. Hence, the adjustment coefficient KRS is calibrated for the study location under consideration so that the calibrated KRS could be used to better predict daily solar radiation and hence better estimation of reference evapotranspiration.


MAUSAM ◽  
2021 ◽  
Vol 70 (2) ◽  
pp. 347-356
Author(s):  
SUMAN SAMANTA ◽  
SAON BANERJEE ◽  
ASIS MUKHERJEE ◽  
PULAK KUMAR PATRA ◽  
PRAMITIK CHAKRABORTY

2021 ◽  
Vol 7 (2) ◽  
pp. 42-48
Author(s):  
U. Joshi ◽  
P. M. Shrestha ◽  
S. Maharjan ◽  
B. Maharjan ◽  
N. P. Chapagain ◽  
...  

Accurate knowledge of global solar radiation distribution is essential for designing, sizing, and performing an evaluation of solar energy system in any part of the world. However, it is not available in many sites of Nepal due to the high expense of the technical process. This study is focused on the performance of different models based on daily global solar radiation, sunshine hour, temperature, and relative humidity at mid-hill region Lumle, (lat. 28.29650N, long. 83.8179oE, and Alt. 1740.0 m.a.s.l.). This study is carried for the year 2018 to 2020. The performance of different models based on sunshine hour, temperature, and relative humidity were analyzed using the regression technique and statistical tools such as Root Mean Square Error (RMSE), Mean Bias Error (MBE), Mean Percentage Error (MPE), and Coefficient of determination (R2). After the analysis, the modified Angstrom model (M-9) based on temperature difference and relative humidity was found to be the best in terms of accuracy of least RMSE value and highest coefficient of determination. Finally, the empirical constants for model m-9 are a = 0.003, b = 0.523, c = 0.118 and, d = 0.002 obtained. The calculated empirical constants can be utilized for the prediction of GSR at similar geographical locations of Nepal.


MAUSAM ◽  
2021 ◽  
Vol 71 (3) ◽  
pp. 451-466
Author(s):  
SAMANTA SUMAN ◽  
BANERJEE SAON ◽  
PATRA PULAK KUMAR ◽  
MAITI SUDHANSU SEKHAR ◽  
CHATTOPADHYAY NABANSU

Solar radiation is the key energy source for most of the energy conversion systems, whether it is biological or mechanical. It is also the most fundamental energy source for future energy demand. Like most of the developing countries, India also lacks sufficient instrument facilities to measure global solar radiation (GSR) at recommended spatial interval and alternative approaches must be used to generate GSR data. In the present study, six well known empirical models were tested to estimate the GSR over twelve major cities of India using long-term global solar radiation and bright sunshine hour data. The empirical coefficients have been calculated for all the models and each location using regression analysis method. Daily GSR are then calculated using those regression constants along with statistical analysis. Results reveal that all the models shows close estimation with low mean bias error (MBE), root mean square error (RMSE) and mean percentage error (MPE) values. Among all models, linear exponential and linear logarithmic models are highly recommended for prediction of GSR throughout the country, except Shillong, where Bakircilinear exponential model is recommended. Significance tests i.e., t-test also confirms that this two model produce most significant results than others.


2021 ◽  
Vol 12 (1-2) ◽  
pp. 127-133
Author(s):  
MA Farukh ◽  
MA Islam ◽  
L Akter ◽  
R Khatun

In this study, Sunshine duration data of eight divisional headquarters of Bangladesh Meteorological Stations (Dhaka, Rangpur, Rajshahi, Mymensingh, Sylhet, Barishal, Khulna and Chattagram) were analyzed to evaluate the long-term changes and trends. The data used are the BMD data spanning from 1980 to 2010. The annual sunshine duration has decreased by the month of (June –September) from 1980 to 2010. Seasonal changes in sunshine duration were also analyzed where the maximum decline was found in rainy-monsoon season (June – September), the winter season (December – February), then the post-monsoon season (October – November) and the minimum in the pre-monsoon season (March – May). Analysis of observed data before and after 2000 represents the sunshine durations have decreasing trends in all divisional headquarters of Bangladesh except Chattagram station during the month of (January – December). General Circulation Model (GCM) defined that the maximum sunshine hour was decline north-east and south-west in all divisional headquarters of Bangladesh during the month of (June – September) and the minimum sunshine hour was decline in eastern part of the country during the month of (March – May). Environ. Sci. & Natural Resources, 12(1&2): 127-133, 2019


BIBECHANA ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 159-169
Author(s):  
Usha Joshi ◽  
I B Karki ◽  
N P Chapagain ◽  
K N Poudyal

Global Solar Radiation (GSR) is the cleanest and freely available energy resource on the earth.  GSR  was measured for six years (2010 -2015) at the horizontal surface using calibrated first-class CMP6 pyranometer at Kathmandu (Lat. 27.70o N, Long. 85.5oE and Alt. 1350m). This paper explains the daily, monthly, and seasonal variations of GSR and also compares with sunshine hour, ambient temperature, relative humidity, and precipitation to GSR. The annual average global solar radiation is about 4.16 kWh/m2/day which is a significant amount to promote solar active and passive energy technologies at the Trans-Himalaya region. In this study, the meteorological parameters are utilized in the regression technique for four different empirical models and finally, the empirical constants are found. Thus obtained coefficients are utilized to predict the GSR using meteorological parameters for the years to come. In addition, the predicted GSR is found to be closer to the measured value of GSR. The values are justified by using statistical tools such as coefficient of determination (R2), root mean square error (RMSE), mean percentage error (MPE), and mean bias error (MBE). Finally, the values of R2, RMSE, MPE, and MBE are found to be 0.792, 1.405, -1.014, and 0.011, respectively for the model (D), which are based on sunshine hour, temperature and relative humidity. In this model, the empirical constants, a = 0.155, b = 0.134, c = 0.014 and d = 0.0007 are determined which can be utilized at the similar geographical locations of Nepal. BIBECHANA 18 (2021) 159-169


Patan Pragya ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 97-104
Author(s):  
Usha Joshi ◽  
P. M. Shrestha ◽  
I. B. Karki ◽  
N. P. Chapagain ◽  
K. N. Poudyal

The solar energy is the abundantly available free and clean energy resources in Nepal. There are more than 300 sunny days because of Nepal lies in solar zone in a global map. The total solar radiation was measured by using CMP6 pyranometer at Nepalgunj (lat.:28.10oN, long.: 81.67oEand Alt. 165.0masl). The main objective of this study is to select the better empirical model and its empirical constants for the prediction of TSR for the year come. In this research, six different empirical models and meteorological parameters are utilized in the presence of regression technique for the years 2011 and 2012. Finally the different empirical constants are found. After the error analysis, the Swarthman-Oguniade model is found to perform better than others models. So the empirical constants of this model is utilized to predict the TSR of similar geographical sites of Nepal.


Author(s):  
N.E. Onwuegbunam ◽  
D.O. Onwuegbunam ◽  
V.C. Ameso ◽  
U.U. Emeghara ◽  
E.J. Zakka

The sensitivity analysis of the Food and Agriculture Organization (FAO) CropWat 8.0 model is aimed at determining the dominant variable of the model in the study area. Hence, the sensitivity coefficient and the correlation of the reference evapotranspiration (ETo) in Afaka, Kaduna, Nigeria, with each of the climatic input variables of the model, namely, maximum temperature (Tmax), minimum temperature (Tmin), humidity (H), wind speed (WS) and sunshine hour (SSH), were evaluated. A perturbation method was used in the evaluation and the sensitivity coefficients were obtained in a decreasing order of 0.55, 0.42, 0.22, 0.09 and -0.08 for Tmax, WS, SSH, Tmin and H, respectively. Also, the correlation of ETo with each of the input parameters, irrespective of the others, show the following correlation coefficients, r; SSH (r = 0.8675), Tmax (r = 0.6979), Tmin (r = 0.6226), H (r = 0.19) and WS (r = 0.0742). Hence, radiation and temperature-based estimations of ETo were recommended as useful tools for ETo estimation in the face of limited or scarce data and are adaptable to areas with similar climate characteristics. This would also serve as a theoretical basis for future studies on the response of ETo to climatic change in the study area and other areas with similar climate.


2020 ◽  
Vol 7 (04) ◽  
Author(s):  
V VISHA KUMARI ◽  
PURABI BANERJEE ◽  
ROSHNI VIJAYAN ◽  
RAJIB NATH ◽  
KAJAL SENGUPTA ◽  
...  

A field experiment was conducted at BCKV during Rabi, 2018-19 and 2019-20 to study the effect of Zn, Fe and B foliar spray on phenology and thermal indices of popular lentil variety, Moitree (WBL 77) under different sowing condition [1st week of November (normal) and 1st week of December (late)]. Delay in sowing of crop from November to December reduced the crop duration by 11.4 days (113.4 days vs 101.7 days). The variation in mean daily temperature and bright sunshine hour among two sowing dates resulted in varied accumulated Growing Degree Days (GDD), Helio Thermal Units (HTU) as well as Photo Thermal Unit (PTU). It was found that different dates of sowing have a larger impact on change in phenology of the crop and thus affect various thermal indices. Foliar spraying of micronutrients viz., B + Fe @ 0.5% produced significantly higher seed and stover yield of 1438 kg ha-1 and 3981 kg ha-1 respectively, which were 86.26% and 27.0% more than that obtained from the control treatment (772 and 3134 kg ha-1). The study conducted revealed that along with optimum date of sowing, spraying micronutrients especially a mixture of [email protected] % and [email protected] % could also bring in change of phenology to some extent. This may help in better accumulation of photosynthate hence, improving the yield responses of lentil.


Sign in / Sign up

Export Citation Format

Share Document