scholarly journals Deep Multi-View Breast Cancer Detection: A Multi-View Concatenated Infrared Thermal Images Based Breast Cancer Detection System Using Deep Transfer Learning

2021 ◽  
Vol 38 (6) ◽  
pp. 1699-1711
Author(s):  
Devanshu Tiwari ◽  
Manish Dixit ◽  
Kamlesh Gupta

This paper simply presents a fully automated breast cancer detection system as “Deep Multi-view Breast cancer Detection” based on deep transfer learning. The deep transfer learning model i.e., Visual Geometry Group 16 (VGG 16) is used in this approach for the correct classification of Breast thermal images into either normal or abnormal. This VGG 16 model is trained with the help of Static as well as Dynamic breast thermal images dataset consisting of multi-view, single view breast thermal images. These Multi-view breast thermal images are generated in this approach by concatenating the conventional left, frontal and right view breast thermal images taken from the Database for Mastology Research with Infrared image for the first time in order to generate a more informative and complete thermal temperature map of breast for enhancing the accuracy of the overall system. For the sake of genuine comparison, three other popular deep transfer learning models like Residual Network 50 (ResNet50V2), InceptionV3 network and Visual Geometry Group 19 (VGG 19) are also trained with the same augmented dataset consisting of multi-view as well as single view breast thermal images. The VGG 16 based Deep Multi-view Breast cancer Detect system delivers the best training, validation as well as testing accuracies as compared to their other deep transfer learning models. The VGG 16 achieves an encouraging testing accuracy of 99% on the Dynamic breast thermal images testing dataset utilizing the multi-view breast thermal images as input. Whereas the testing accuracies of 95%, 94% and 89% are achieved by the VGG 19, ResNet50V2, InceptionV3 models respectively over the Dynamic breast thermal images testing dataset utilizing the same multi-view breast thermal images as input.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262349
Author(s):  
Esraa A. Mohamed ◽  
Essam A. Rashed ◽  
Tarek Gaber ◽  
Omar Karam

Breast cancer is one of the most common diseases among women worldwide. It is considered one of the leading causes of death among women. Therefore, early detection is necessary to save lives. Thermography imaging is an effective diagnostic technique which is used for breast cancer detection with the help of infrared technology. In this paper, we propose a fully automatic breast cancer detection system. First, U-Net network is used to automatically extract and isolate the breast area from the rest of the body which behaves as noise during the breast cancer detection model. Second, we propose a two-class deep learning model, which is trained from scratch for the classification of normal and abnormal breast tissues from thermal images. Also, it is used to extract more characteristics from the dataset that is helpful in training the network and improve the efficiency of the classification process. The proposed system is evaluated using real data (A benchmark, database (DMR-IR)) and achieved accuracy = 99.33%, sensitivity = 100% and specificity = 98.67%. The proposed system is expected to be a helpful tool for physicians in clinical use.


Author(s):  
Marek Bialkowski ◽  
Norhudah Seman ◽  
Amin Abbosh ◽  
Wee Chang Khor

The design of compact wideband microwave reflectometers for the purpose of inclusion in a breast cancer detection system is presented. In this system, a wideband frequency source is used to synthesize a narrow pulse via the step-frequency synthesis method. The reflectometer undertakes measurements in the frequency domain and the collected data is transformed into the time/space domain using IFFT. In order to accomplish reflection coefficient measurements over a large frequency band, compact wideband couplers and power dividers are used to form the reflectometer. Two compact six-port reflectometer configurations are investigated. One uses the Lange coupler and the Gysel power divider and the other one employs a 3dB slot-coupled microstrip coupler and a 2-stage Wilkinson power divider. The reflectometer employing the slot-coupled coupler and the Wilkinson divider provides a wider operational bandwidth, as shown by simulation results performed with Agilent ADS.


2020 ◽  
Vol 105 ◽  
pp. 103202 ◽  
Author(s):  
Jose-Luis Gonzalez-Hernandez ◽  
Alyssa N. Recinella ◽  
Satish G. Kandlikar ◽  
Donnette Dabydeen ◽  
Lori Medeiros ◽  
...  

2014 ◽  
Vol 11 (2) ◽  
pp. 907-910
Author(s):  
R.J. Hemalatha ◽  
G. Hari Krishnan ◽  
G. Umashankar ◽  
Sheeba Abraham

2020 ◽  
Vol 59 (17) ◽  
pp. E23 ◽  
Author(s):  
Esdras Chaves ◽  
Caroline B. Gonçalves ◽  
Marcelo K. Albertini ◽  
Soojeong Lee ◽  
Gwanggil Jeon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document