scholarly journals Breast Cancer–Detection System Using PCA, Multilayer Perceptron, Transfer Learning, and Support Vector Machine

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 204309-204324
Author(s):  
Huan-Jung Chiu ◽  
Tzuu-Hseng S. Li ◽  
Ping-Huan Kuo
2010 ◽  
Vol 36 (3) ◽  
pp. 1503-1510 ◽  
Author(s):  
U. Rajendra Acharya ◽  
E. Y. K. Ng ◽  
Jen-Hong Tan ◽  
S. Vinitha Sree

2021 ◽  
Vol 38 (6) ◽  
pp. 1699-1711
Author(s):  
Devanshu Tiwari ◽  
Manish Dixit ◽  
Kamlesh Gupta

This paper simply presents a fully automated breast cancer detection system as “Deep Multi-view Breast cancer Detection” based on deep transfer learning. The deep transfer learning model i.e., Visual Geometry Group 16 (VGG 16) is used in this approach for the correct classification of Breast thermal images into either normal or abnormal. This VGG 16 model is trained with the help of Static as well as Dynamic breast thermal images dataset consisting of multi-view, single view breast thermal images. These Multi-view breast thermal images are generated in this approach by concatenating the conventional left, frontal and right view breast thermal images taken from the Database for Mastology Research with Infrared image for the first time in order to generate a more informative and complete thermal temperature map of breast for enhancing the accuracy of the overall system. For the sake of genuine comparison, three other popular deep transfer learning models like Residual Network 50 (ResNet50V2), InceptionV3 network and Visual Geometry Group 19 (VGG 19) are also trained with the same augmented dataset consisting of multi-view as well as single view breast thermal images. The VGG 16 based Deep Multi-view Breast cancer Detect system delivers the best training, validation as well as testing accuracies as compared to their other deep transfer learning models. The VGG 16 achieves an encouraging testing accuracy of 99% on the Dynamic breast thermal images testing dataset utilizing the multi-view breast thermal images as input. Whereas the testing accuracies of 95%, 94% and 89% are achieved by the VGG 19, ResNet50V2, InceptionV3 models respectively over the Dynamic breast thermal images testing dataset utilizing the same multi-view breast thermal images as input.


Author(s):  
Mohamed Abdelmoneim Elshafey ◽  
Tarek Elsaid Ghoniemy

Among the cancer diseases, breast cancer is considered one of the most prevalent threats requiring early detection for a higher recovery rate. Meanwhile, the manual evaluation of malignant tissue regions in histopathology images is a critical and challenging task. Nowadays, deep learning becomes a leading technology for automatic tumor feature extraction and classification as malignant or benign. This paper presents a proposed hybrid deep learning-based approach, for reliable breast cancer detection, in three consecutive stages: 1) fine-tuning the pre-trained Xception-based classification model, 2) merging the extracted features with the predictions of a two-layer stacked LSTM-based regression model, and finally, 3) applying the support vector machine, in the classification phase, to the merged features. For the three stages of the proposed approach, training and testing phases are performed on the BreakHis dataset with nine adopted different augmentation techniques to ensure generalization of the proposed approach. A comprehensive performance evaluation of the proposed approach, with diverse metrics, shows that employing the LSTM-based regression model improves accuracy and precision metrics of the fine-tuned Xception-based model by 10.65% and 11.6%, respectively. Additionally, as a classifier, implementing the support vector machine further boosts the model by 3.43% and 5.22% for both metrics, respectively. Experimental results exploit the efficiency of the proposed approach with outstanding reliability in comparison with the recent state-of-the-art approaches.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262349
Author(s):  
Esraa A. Mohamed ◽  
Essam A. Rashed ◽  
Tarek Gaber ◽  
Omar Karam

Breast cancer is one of the most common diseases among women worldwide. It is considered one of the leading causes of death among women. Therefore, early detection is necessary to save lives. Thermography imaging is an effective diagnostic technique which is used for breast cancer detection with the help of infrared technology. In this paper, we propose a fully automatic breast cancer detection system. First, U-Net network is used to automatically extract and isolate the breast area from the rest of the body which behaves as noise during the breast cancer detection model. Second, we propose a two-class deep learning model, which is trained from scratch for the classification of normal and abnormal breast tissues from thermal images. Also, it is used to extract more characteristics from the dataset that is helpful in training the network and improve the efficiency of the classification process. The proposed system is evaluated using real data (A benchmark, database (DMR-IR)) and achieved accuracy = 99.33%, sensitivity = 100% and specificity = 98.67%. The proposed system is expected to be a helpful tool for physicians in clinical use.


Sign in / Sign up

Export Citation Format

Share Document