scholarly journals Earth remote sensing imagery classification using a multi-sensor super-resolution fusion algorithm

2020 ◽  
Vol 44 (4) ◽  
pp. 627-635
Author(s):  
A.M. Belov ◽  
A.Y. Denisova

Earth remote sensing data fusion is intended to produce images of higher quality than the original ones. However, the fusion impact on further thematic processing remains an open question because fusion methods are mostly used to improve the visual data representation. This article addresses an issue of the effect of fusion with increasing spatial and spectral resolution of data on thematic classification of images using various state-of-the-art classifiers and features extraction methods. In this paper, we use our own algorithm to perform multi-frame image fusion over optical remote sensing images with different spatial and spectral resolutions. For classification, we applied support vector machines and Random Forest algorithms. For features, we used spectral channels, extended attribute profiles and local feature attribute profiles. An experimental study was carried out using model images of four imaging systems. The resulting image had a spatial resolution of 2, 3, 4 and 5 times better than for the original images of each imaging system, respectively. As a result of our studies, it was revealed that for the support vector machines method, fusion was inexpedient since excessive spatial details had a negative effect on the classification. For the Random Forest algorithm, the classification results of a fused image were more accurate than for the original low-resolution images in 90% of cases. For example, for images with the smallest difference in spatial resolution (2 times) from the fusion result, the classification accuracy of the fused image was on average 4% higher. In addition, the results obtained for the Random Forest algorithm with fusion were better than the results for the support vector machines method without fusion. Additionally, it was shown that the classification accuracy of a fused image using the Random Forest method could be increased by an average of 9% due to the use of extended attribute profiles as features. Thus, when using data fusion, it is better to use the Random Forest classifier, whereas using fusion with the support vector machines method is not recommended.

Author(s):  
Nur Ariffin Mohd Zin ◽  
Hishammuddin Asmuni ◽  
Haza Nuzly Abdul Hamed ◽  
Razib M. Othman ◽  
Shahreen Kasim ◽  
...  

Recent studies have shown that the wearing of soft lens may lead to performance degradation with the increase of false reject rate. However, detecting the presence of soft lens is a non-trivial task as its texture that almost indiscernible. In this work, we proposed a classification method to identify the existence of soft lens in iris image. Our proposed method starts with segmenting the lens boundary on top of the sclera region. Then, the segmented boundary is used as features and extracted by local descriptors. These features are then trained and classified using Support Vector Machines. This method was tested on Notre Dame Cosmetic Contact Lens 2013 database. Experiment showed that the proposed method performed better than state of the art methods.


2011 ◽  
Vol 54 (3) ◽  
pp. 272-281 ◽  
Author(s):  
XiaoHua Yang ◽  
JingFeng Huang ◽  
YaoPing Wu ◽  
JianWen Wang ◽  
Pei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document