scholarly journals Analysis of control programs and climb paths of the hypersonic first stage of an aerospace system

2019 ◽  
Vol 18 (1) ◽  
pp. 18-29 ◽  
Author(s):  
V. L. Balakin ◽  
M. M. Krikunov

Control programs and flight paths of the hypersonic first stage of an aerospace system in climb with acceleration to hypersonic velocity are analyzed. Two approaches to determining the control programs and flight paths are identified: the "traditional" approach and the "optimization" one. The "traditional" approach implies specifying a typical mission profile with max-q and peak heat flux. In the case of the "optimization" approach the problem of propellant mass minimum is stated and solved using the method of Pontryagin’s maximum principle. It concerns the mass of propellant consumed in hypersonic acceleration for various terminal flight path angles. Optimal control programs and optimal flight paths are determined. Those meeting the max-q and peak heat flux requirements are selected. The results of modeling the motion of a hypersonic booster with typical and optimal angle-of-attack schedules corresponding to the "traditional" and "optimization" approaches are presented and discussed. It is established that less propellant is consumed in the case of optimal control, which is accounted for by more efficient use of the hypersonic booster's aerodynamic performance due to direct control of the angle of attack.

2019 ◽  
Vol 18 (2) ◽  
pp. 7-20 ◽  
Author(s):  
V. L. Balakin ◽  
M. M. Krikunov

Disturbed motion of a hypersonic vehicle in climb is analyzed. Deviations of atmospheric density from standard values and deviations of aerodynamic force coefficients from nominal values are taken as disturbances. Disturbed motion of a hypersonic vehicle with the optimum angle-of-attack schedule and nominal flight characteristics is modeled. Deviations of terminal conditions of disturbed motion from the target values of velocity, altitude and path inclination are determined. Using the method of Pontryagin’s maximum principle the problem of fuel mass minimum consumed in hypersonic acceleration climb is solved for disturbed motion. Optimal angle-of-attack schedules, optimal flight paths and finite values of the hypersonic vehicle’s mass are determined. Comparative analysis of optimal control programs and flight paths obtained for disturbed and undisturbed motion is carried out.


2020 ◽  
Vol 19 (3) ◽  
pp. 18-30
Author(s):  
M. M. Krikunov

The paper deals with disturbed transatmospheric motion of the first stage of an aerospace system. Deviations of atmospheric density and deviations of aerodynamic force coefficients from reference values are taken as disturbances. Optimal angle-of-attack schedules for the first stage are specified. Comparative analysis of optimal control programs for disturbed and undisturbed motion is carried out.


2019 ◽  
Vol 18 (3) ◽  
pp. 16-28
Author(s):  
V. L. Balakin ◽  
M. M. Krikunov

Disturbed motion of the hypersonic first stage of an aerospace system in climb is analyzed. Deviations of atmospheric density from standard values and deviations of aerodynamic force coefficients from reference values are taken as disturbances. Disturbance motion of the hypersonic first stage of a hypersonic vehicle with the optimal angle-of-attack schedule obtained for reference atmosphere and nominal aerodynamic characteristics is modeled. Deviations of terminal conditions of disturbed motion from the target values of velocity, altitude and flight path inclination are determined. The problem of minimum propellant mass consumed in the climb with acceleration to hypersonic velocity is solved for disturbed motion by the method of Pontryagin’s maximum principle. Optimal angle-of-attack schedules, optimal flight paths and finite values of the mass of the hypersonic first stage are determined. Comparative analysis of optimal control programs and flight paths for disturbed and undisturbed motion is made.


Author(s):  
Penglei Zhao ◽  
Wanchun Chen ◽  
Wenbin Yu

This paper presents the design of a singular-perturbation-based optimal guidance with constraints on terminal flight-path angle and angle of attack. By modeling the flight-control system dynamics as a first-order system, the angle of attack is introduced into the performance index as a state variable. To solve the resulting high-order optimal guidance problem analytically, the posed optimal guidance problem is divided into two sub-problems by utilizing the singular perturbation method according to two time scales: range, altitude, and flight-path angle are the slow time-scale variables while the angle of attack is the fast time-scale variable. The outer solutions are the optimal control of the slow-scale subsystem. Thereafter, by applying the stretching transformation, the fast-scale subsystem establishes the relationships between the outer solutions and acceleration command. Then, the optimal command can be obtained by solving the fast-scale subsystem also using the optimal control theory. The proposed guidance can achieve a near-zero terminal acceleration as well as a small miss distance. The superior performance of the guidance is demonstrated by adequate trajectory simulations.


Sign in / Sign up

Export Citation Format

Share Document