TAXONOMIC COMPOSITION AND PALEOECOLOGICAL GROUPS OF BELEMNITES IN THE LOWER VALANGINIAN OF ANABAR REGION (NORTHERN SIBERIA)

Author(s):  
V.D. Efremenko
2001 ◽  
Vol 27 (6) ◽  
pp. 335-339 ◽  
Author(s):  
Ulrich Henn ◽  
Jaroslav Hyršl ◽  
Claudio C. Milisenda
Keyword(s):  

Author(s):  
M. A. Gondal ◽  
S. Iqbal ◽  
U. Atique ◽  
N. U. Saher ◽  
N. A. Qureshi ◽  
...  

Abstract The primary objective of this study was to investigate the seasonal fish and crustacean variations concerning taxonomic composition, species richness, and diversity in sandy beach habitat. For this purpose, we investigated the Sonmiani Hor lagoon area during four distinct seasons, i.e., northeast (NE) monsoon, pre-monsoon, south-west (SW) monsoon, and post-monsoon for one year. During each haul, the net was pulled about 100m along the beach in 0.5m depth. The results showed a strong linear correlation between the diversity index and equitability in fishes (r = 0.978). The diversity index was strong negatively correlated with the abundance and biomass (r = -0.978, -0.972, respectively). The physical attributes like sea surface water temperature and salinity showed a strong negative effect on species assemblages (r = -0.981 and -0.943, respectively). The mean air and water temperature illustrated approximately 3°C difference during NE and pre-monsoon seasons. However, salinity, pH, and electrical conductivity did not show any significant seasonal variabilities. Under the ecological indices, the fish species displayed higher diversity (H’ = 3.19) during SW monsoon, whereas the lowest diversity was observed during pre-monsoon (H’ = 1.58). The equitability and species richness, however, remained more noticeable during SW monsoon (J’ = 0.81). The total number of individuals of fish and crustaceans reached 4799 with 3813 fish individuals and 986 individuals of crustaceans. A total of 27 families of fish while five crustacean families comprising of 30 genera and 38 fish species while ten genera and 17 species of crustaceans were recorded. Liza subviridis displayed the highest abundance among the sampled fish species. In conclusion, fish species constituted a significant part of the coastal fauna in the study area. The seasonal variations displayed distinct variations in fish species composition and diversity.


2019 ◽  
pp. 105-115
Author(s):  
А.Ш. Хужахметова

Показана актуальность изучения экологической пластичности древесных растений в связи с необходимостью подбора адаптированного видового состава деревьев и кустарников для защитных лесных насаждений в условиях климатических изменений. Установлено, что экологическая пластичность и пределы толерантности растений связаны со свойством организмов адаптироваться к тому или иному диапазону факторов среды. В статье представлен таксономический состав орехоплодных культур коллекций ФНЦ агроэкологии РАН. Это шесть видов рода Juglans: J. regia, J. mandshurica, J. cinerea, J. rupestris, J. ailanthifolia, J. nigra и три вида рода Corylus: С. avellana L., С. аmericana W., сорта С. pontica C. Koch Президент, Футкурами, Черкесский2. Приведены сведения о положительном опыте культивирования Corylus avellana L. в плантационных насаждениях (1,6 га, посадка рядовая, схема размещения 55 м) в условиях южных черноземов. Цель исследований изучить экологическую пластичность орехоплодных кустарников коллекций ФНЦ агроэкологии РАН. На примере родового комплекса Corylus получены материалы по экологической пластичности орехоплодных кустарников в условиях каштановых (кадастр. 34:36:0000:14:0178), светлокаштановых почв (34:34:000000:122 34:34:060061:10). Установлены уровни изменчивости морфологических признаков ассимиляционного аппарата и плодов С. avellana L., сортов С. pontica C. Koch., которые согласуются с зимо и засухоустойчивостью. Кластерный анализ позволил выявить корреляцию признаков при 5 уровне значимости. Для целей защитного лесоразведения и озеленения засушливых районов рекомендованы Corylus avellana и Черкесский2 с выраженной вариабельностью морфологических признаков, которая указывает на их широкую экологическую валентность и адаптационные возможности в рассматриваемых условиях. The urgency of studying the ecological plasticity of woody plants in connection with the need to select an adapted species composition of trees and shrubs for protective forest plantations in the context of climate change is shown. It is established that the ecological plasticity and tolerance range of plants is associated with the ability of organisms to adapt to a particular range of environmental factors. The article presents the taxonomic composition of nut crops in the collections of FSC Agroecology RAS. Six species of Juglans: J. regia, J. mandshurica, J. cinerea, J. rupestris, J. ailanthifolia, J. nigra and three species of the genus Corylus: С. avellana L., С. аmericana W., varieties of C. pontica C. Koch the President, Futkurami, Circassian2. Data on positive experience of cultivation of Corylus avellana L. in plantation plantings (1,6 hectares, landing ordinary, the scheme of placement of 55 m) in the conditions of southern chernozems are given. The purpose of the research is to study the ecological plasticity of nutbearing shrubs of the collections of the Federal scientific center for Agroecology Russian Academy of Sciences. For example, a generic complex Corylus submissions received on the environmental plasticity of nut bushes in the conditions of brown (the cadaster nubmer 34:36:0000:14:0178), light chestnut soils (34:34:000000:122 34:34:060061:10). The levels of variability of morphological features of the assimilation apparatus and fruits of Corylus avellana L., С. pontica C. Koch varieties were established., which are consistent with winter and drought resistance. Cluster analysis revealed the correlation of features at 5 significance level. Corylus avellana and Circassian2 with a pronounced variability of morphological features, which indicates their broad ecological valence and adaptation capabilities in the conditions under consideration, are recommended for the purposes of protective afforestation and greening of dry areas.


2018 ◽  
Vol 0 (4) ◽  
pp. 54-56
Author(s):  
R. I. Sydorchuk ◽  
O. Y. Khomko ◽  
R. P. Knut ◽  
P. M. Volyanyuk ◽  
L. I. Sydorchuk ◽  
...  

2018 ◽  
Vol 52 (2) ◽  
pp. 519-534 ◽  
Author(s):  
V. E. Fedosov

Recent studies on Orthotrichoid mosses in Russia are summarized genus by genus. Orthotrichum furcatum Otnyukova is synonymized with Nyholmiella obtusifolia. Orthotrichum vittii is excluded from the Russian moss flora. Description of O. dagestanicum is amended. Fifty four currently recognized species from 9 genera of the Orthotrichaceae are presently known to occur in Russia; list of species with common synonyms and brief review of distribution in Russia is presented. Numerous problematic specimens with unresolved taxonomy were omitted for future. Revealed taxonomical inconsistencies in the genera Zygodon, Ulota, Lewinskya, Nyholmiella, Orthotrichum are briefly discussed. Main regularities of spatial differentiation of the family Orthotrichaceae in Russia are considered. Recently presented novelties contribute to the certain biogeographic pattern, indicating three different centers of diversity of the family, changing along longitudinal gradient. Unlike European one, continental Asian diversity of Orthotrichaceae is still poorly known, the Siberian specimens which were previously referred to European species in most cases were found to represent other, poorly known or undescribed species. North Pacific Region houses peculiar and poorly understood hot spot of diversity of Orthotrichoid mosses. Thus, these hot spots are obligatory to be sampled in course of revisions of particular groups, since they likely comprise under-recorded cryptic- or semi-cryptic species. Latitudinal gradient also contributes to the spatial differentiation of the revealed taxonomic composition of Orthotrichaceae.


2017 ◽  
Vol 51 ◽  
pp. 57-70 ◽  
Author(s):  
E. S. Gusev ◽  
O. S. Perminova ◽  
N. A. Startseva ◽  
A. G. Okhapkin

The latest special studies of the genus Synura in Russia were conducted in the 1970s. In the last decade, 14 new species of the genus were described based on molecular and morphological data. The total number of valid taxa of the genus has increased to 49. Only 18 taxa of Synura are known in Russia up to date, and the diver sity of the genus on this huge territory is strongly underestimated. Previous studies of the genus were focused mainly on large lakes or reservoirs. To reveal a more complete flora, it is necessary to include other habitats into account. Small urban rivers can be prospective habitats for interesting taxa including synuralean algae. Our study focuses on the taxonomic composition of the genus Synura in four small rivers in Nizhniy Novgorod (European Russia): Chyornaya, Levinka, Borzovka and Rzhavka. All the rivers flow in the city and fall under strong anthropogenic impact. The genus Synura was studied by means of transmission and scanning electron microscopy during 2011, 2012, 2014, 2015. In total, eight species and one form of Synura have been found: S. conopea, S. curtispina, S. echinulata, S. glabra, S. macropora, S. petersenii, S. spinosa f. spinosa, S. spinosa f. longispina, S. uvella. All nine taxa were observed in the river Chyornaya. Five taxa were found in the rivers Levinka, Borzovka and Rzhavka. One species (Synura conopea) is a new record to the flora of Russia. It was found in all studied rivers. Four taxa (S. conopea, S. glabra, S. macropora, S. spinosa f. longispina) are new records to the Middle Volga river basin.


Author(s):  
Peter H. Wiebe ◽  
Ann Bucklin ◽  
Mark Benfield

This chapter reviews traditional and new zooplankton sampling techniques, sample preservation, and sample analysis, and provides the sources where in-depth discussion of these topics is addressed. The net systems that have been developed over the past 100+ years, many of which are still in use today, can be categorized into eight groups: non-opening/closing nets, simple opening/closing nets, high-speed samplers, neuston samplers, planktobenthos plankton nets, closing cod-end samplers, multiple net systems, and moored plankton collection systems. Methods of sample preservation include preservation for sample enumeration and taxonomic morphological analysis, and preservation of samples for genetic analysis. Methods of analysis of zooplankton samples include determination of biomass, taxonomic composition, and size by traditional methods; and genetic analysis of zooplankton samples.


Sign in / Sign up

Export Citation Format

Share Document