scholarly journals Influence of impervious surface expansion on flood peak under urbanization—A case study of Qinhuai River in Nanjing

2021 ◽  
Vol 33 (5) ◽  
pp. 1574-1583
Author(s):  
Sun Yanwei ◽  
◽  
Xu Youpeng ◽  
Gao Bin ◽  
Wang Qiang ◽  
...  
2018 ◽  
Vol 10 (10) ◽  
pp. 3761 ◽  
Author(s):  
Huafei Yu ◽  
Yaolong Zhao ◽  
Yingchun Fu ◽  
Le Li

Urban rainstorm waterlogging has become a typical “city disease” in China. It can result in a huge loss of social economy and personal property, accordingly hindering the sustainable development of a city. Impervious surface expansion, especially the irregular spatial pattern of impervious surfaces, derived from rapid urbanization processes has been proven to be one of the main influential factors behind urban waterlogging. Therefore, optimizing the spatial pattern of impervious surfaces through urban renewal is an effective channel through which to attenuate urban waterlogging risk for developed urban areas. However, the most important step for the optimization of the spatial pattern of impervious surfaces is to understand the mechanism of the impact of urbanization processes, especially the spatiotemporal pattern of impervious surfaces, on urban waterlogging. This research aims to elucidate the mechanism of urbanization’s impact on waterlogging by analysing the spatiotemporal characteristics and variance of urban waterlogging affected by urban impervious surfaces in a case study of Guangzhou in China. First, the study area was divided into runoff plots by means of the hydrologic analysis method, based on which the analysis of spatiotemporal variance was carried out. Then, due to the heterogeneity of urban impervious surface effects on waterlogging, a geographically weighted regression (GWR) model was utilized to assess the spatiotemporal variance of the impact of impervious surface expansion on urban rainstorm waterlogging during the period from the 1990s to the 2010s. The results reveal that urban rainstorm waterlogging significantly expanded in a dense and circular layer surrounding the city centre, similar to the impervious surface expansion affected by urbanization policies. Taking the urban runoff plot as the research unit, GWR has achieved a good modelling effect for urban storm waterlogging. The results show that the impervious surfaces in the runoff plots of the southeastern part of Yuexiu, the southern part of Tianhe and the western part of Haizhu, which have experienced major urban engineering construction, have the strongest correlation with urban rainstorm waterlogging. However, for different runoff plots, the impact of impervious surfaces on urban waterlogging is quite different, as there exist other influence factors in the various runoff plots, although the impervious surface is one of the main factors. This result means that urban renewal strategy to optimize the spatial pattern of impervious surfaces for urban rainstorm waterlogging prevention and control should be different for different runoff plots. The results of the GWR model analysis can provide useful information for urban renewal strategy-making.


2014 ◽  
Vol 46 (3) ◽  
pp. 400-410 ◽  
Author(s):  
Hitesh Patel ◽  
Ataur Rahman

In rainfall–runoff modeling, Design Event Approach is widely adopted in practice, which assumes that the rainfall depth of a given annual exceedance probability (AEP), can be converted to a flood peak of the same AEP by assuming a representative fixed value for the other model inputs/parameters such as temporal pattern, losses and storage-delay parameter of the runoff routing model. This paper presents a case study which applies Monte Carlo simulation technique (MCST) to assess the probabilistic nature of the storage delay parameter (kc) of the RORB model for the Cooper's Creek catchment in New South Wales, Australia. It has been found that the values of kc exhibit a high degree of variability, and different sets of plausible values of kc result in quite different flood peak estimates. It has been shown that a stochastic kc in the MCST provides more accurate design flood estimates than a fixed representative value of kc. The method presented in this study can be adapted to other catchments/countries to derive more accurate design flood estimates, in particular for important flood study projects, which require a sensitivity analysis to investigate the impacts of parameter uncertainty on design flood estimates.


Author(s):  
Yu ◽  
Zhao ◽  
Fu

With the rapid expansion of impervious surfaces, urban waterlogging has become a typical “urban disease” in China, seriously hindering the sustainable development of cities. Therefore, reducing the impact of impervious surfaces on surface runoff is an effective approach to alleviate urban waterlogging. Presently, the development mode of many cities in China has shifted from an increase in urban scale to the improvement of urban quality through urban renewal, which is the current and future development path for most cities. Optimizing the design of impervious surfaces in urban renewal planning to reduce its impact on surface runoff is an important way to prevent and control urban waterlogging. The aim of this research is to construct an optimization model of impervious surface space layout under the framework of a geographic simulation technology-integrated ant colony optimization (ACO) and Soil Conservation Service curve number (SCS-CN) model (ACO-SCS) in a case study of Guangzhou in China. Urban runoff plots in the study area are divided according to the area of the urban planning unit. With the goal of minimizing the runoff coefficient, the optimal space layout of the impervious surfaces is obtained, which provides a technical method and reference for urban waterlogging prevention and control through urban renewal planning. The results reveal that the optimization of impervious surface space layout through ACO-SCS achieves a satisfactory effect with an average optimization rate of 9.52%, and a maximum optimization rate of 33.16%. The research also shows that the initial impervious surface layout is the key influencing factor in ACO-SCS. In the urban renewal planning stage, the space layout of the impervious surfaces with a high–low–high density discontinuous connection can be constructed by transforming medium-density impervious surfaces into low-density impervious surfaces to achieve the flat and long-type agglomeration of the low-density and high-density impervious surfaces, which can effectively reduce the influence of urban development on surface runoff. There is spatial heterogeneity of the optimal results in different urban runoff plots. Therefore, the policy of urban renewal planning for urban waterlogging prevention and control should be different. The optimized results of impervious surface space layout provide useful reference information for urban renewal planning.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Changjiang Xu ◽  
Jiabo Yin ◽  
Shenglian Guo ◽  
Zhangjun Liu ◽  
Xingjun Hong

Design flood hydrograph (DFH) for a dam is the flood of suitable probability and magnitude adopted to ensure safety of the dam in accordance with appropriate design standards. Estimated quantiles of peak discharge and flood volumes are necessary for deriving the DFH, which are mutually correlated and need to be described by multivariate analysis methods. The joint probability distributions of peak discharge and flood volumes were established using copula functions. Then the general formulae of conditional most likely composition (CMLC) and conditional expectation composition (CEC) methods that consider the inherent relationship between flood peak and volumes were derived for estimating DFH. The Danjiangkou reservoir in Hanjiang basin was selected as a case study. The design values of flood volumes and 90% confidence intervals with different peak discharges were estimated by the proposed methods. The performance of CMLC and CEC methods was also compared with conventional flood frequency analysis, and the results show that CMLC method performs best for both bivariate and trivariate distributions which has the smallest relative error and root mean square error. The proposed CMLC method has strong statistical basis with unique design flood composition scheme and provides an alternative way for deriving DFH.


2019 ◽  
Vol 11 (6) ◽  
pp. 640 ◽  
Author(s):  
Beibei Wang ◽  
Zhenjie Chen ◽  
A-Xing Zhu ◽  
Yuzhu Hao ◽  
Changqing Xu

As urbanization has profound effects on global environmental changes, quick and accurate monitoring of the dynamic changes in impervious surfaces is of great significance for environmental protection. The increased spatiotemporal resolution of imagery makes it possible to construct time series to obtain long-time-period and high-accuracy information about impervious surface expansion. In this study, a three-step monitoring method based on time series trajectory segmentation was developed to extract impervious surface expansion using Landsat time series and was applied to the Xinbei District, Changzhou, China, from 2005 to 2017. Firstly, the original time series was segmented and fitted to remove the noise caused by clouds, shadows, and interannual differences, leaving only the trend information. Secondly, the time series trajectory features of impervious surface expansion were described using three phases and four types with nine parameters by analyzing the trajectory characteristics. Thirdly, a multi-level classification method was used to determine the scope of impervious surface expansion, and the expansion time was superimposed to obtain a spatiotemporal distribution map. The proposed method yielded an overall accuracy of 90.58% and a Kappa coefficient of 0.90, demonstrating that Landsat time series remote sensing images could be used effectively in this approach to monitor the spatiotemporal expansion of impervious surfaces.


Sign in / Sign up

Export Citation Format

Share Document