scholarly journals Optimization of microwave-assisted hydrothermal pretreatment and its effect on pyrolytic oil quality obtained by an auger reactor

2021 ◽  
Vol 8 (1) ◽  
pp. 1316-1329
Author(s):  
Brenda J. Álvarez-Chávez ◽  
Stéphane Godbout ◽  
Vijaya Raghavan

Microwave-assisted hydrothermal (MHT) treatment of biomass has received significant attention owing to energy efficiency during internal energy transfer and the additional benefits to the hydrochar produced in terms of physicochemical composition. Therefore, this study proposes the combination of MHT pretreatment with the fast pyrolysis process, to evaluate and optimize the effect of this treatment on the quality of the hydrochar and, consequently, on the quality of the bio-oil. The optimization of MHT treatment using black spruce was carried out, followed by fast pyrolysis of the hydrochar produced under optimal conditions in an auger reactor at 550 °C to obtain a high-quality bio-oil. As a result, the pretreated biomass showed on the one hand a significant decrease in the ash content by 58% and 43% in the content of the extractives. While on the other hand, the obtained hydrochar showed an increase in the availability of cellulose by 18.5% as a consequence of the reduction in the content of hemicellulose. Accordingly, hydrochar showed an increase in thermal stability during pyrolysis and it produced a higher total bio-oil yield, increasing by 24%. Most importantly, the oil obtained showed a 35% reduction in moisture content. Chemical composition of the oil was qualitatively examined through GC-MS analysis. It was observed that the bio-oil showed a dramatic increase in the relative content of levoglucosan, by 127%. A bio-oil with the characteristics obtained would be a suitable candidate for use in boilers for heating purposes or chemical extraction.

2019 ◽  
Vol 128 ◽  
pp. 105333 ◽  
Author(s):  
Brenda J. Alvarez-Chavez ◽  
Stéphane Godbout ◽  
Joahnn H. Palacios-Rios ◽  
Étienne Le Roux ◽  
Vijaya Raghavan

Author(s):  
Evan R. Almberg ◽  
Gregory J. Michna ◽  
Stephen P. Gent

Fast pyrolysis is one method of creating bio-oil from biomass such as native prairie grasses, corn stover, and other organic commercial and industrial byproducts. In this study, fast pyrolysis of camelina (Camelina sativa) meal feedstock was performed in an auger-type reactor. End products of the processing consisted of bio-char and condensed vapor in the form of bio-oil (ranging from liquid to highly viscous tar-like products). The bio-oil produced in the reactor was collected and analyzed to determine the effects of reactor and condenser temperatures on the properties of the bio-oil produced. Five reactor temperatures and two condenser temperatures were investigated in this study. The rheological properties of the bio-oil samples were analyzed, water content was determined with the Karl Fisher method, energy content was measured with a bomb calorimeter, and acidity was determined using a total acid titration test. The aging characteristics of the bio-oil were also investigated at seven days, fourteen days, and twenty-eight days after the oil was created to determine what effect, if any, time had on the its properties. Preliminary results indicated that products of the camelina meal pyrolysis process were more uniform when compared to that of other feedstocks (e.g. carinata meal, corn stover), yielding more consistent bio-oil characteristics.


2016 ◽  
Vol 5 (1) ◽  
pp. 94-103 ◽  
Author(s):  
Ville Paasikallio ◽  
Konstantinos Kalogiannis ◽  
Angelos Lappas ◽  
Jani Lehto ◽  
Juha Lehtonen

Sign in / Sign up

Export Citation Format

Share Document