scholarly journals Expression of genes coding for animal virus glycoproteins in heterologous systems.

1999 ◽  
Vol 46 (2) ◽  
pp. 325-339 ◽  
Author(s):  
K Bieńkowska-Szewczyk ◽  
B Szewczyk

The outermost layers of animal viruses are usually composed of glycoproteins. They are responsible not only for the entrance of viruses into, and release from host cells but also for the initial interaction of a viral particle with immunological defense of the host. It is therefore not surprising that many laboratories devote a lot of effort to study viral glycoproteins at the molecular level. Very often such studies are possible only after the introduction of a glycoprotein gene into a heterologous system. Expression of glycoprotein genes is usually obtained in mammalian or insect cells. Expression in mammalian cells yields viral glycoproteins with glycan chains indistinguishable from the original counterparts in virion particles but the level of synthesis of glycoproteins is very low. Vaccinia virus is the most common vector for expression in mammalian cells. It is easy to grow, the introduction of foreign genes is relatively simple and, due to the size of the vaccinia genome, it can accept large pieces of foreign DNA. Glycosylation in insect cells is not as complex as in mammalian cells and usually glycoproteins produced in insect cells are of slightly lower molecular mass than those produced in mammalian cells. The most common vector for expression of glycoproteins in insect cells is a baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The great advantage of this system is a very high level of expression of foreign genes.

2019 ◽  
Author(s):  
Binhui Zhao ◽  
Pankaj Chaturvedi ◽  
David L. Zimmerman ◽  
Andrew S. Belmont

ABSTRACTAchieving reproducible, stable, and high-level transgene expression in mammalian cells remains problematic. Previously, we attained copy-number-dependent, chromosome-position-independent expression of reporter minigenes by embedding them within a BAC containing the mouseMsh3-Dhfrlocus (DHFR BAC). Here we extend this “BAC TG-EMBED” approach. First, we report a toolkit of endogenous promoters capable of driving transgene expression over a 0.01-5 fold expression range relative to the CMV promoter, allowing fine-tuning of relative expression levels of multiple reporter genes expressed on a single BAC. Second, we show small variability in both the expression level and long-term expression stability of a reporter gene embedded in BACs containing either transcriptionally active or inactive genomic regions, making choice of BACs more flexible. Third, we describe an intriguing phenomenon in which BAC transgenes are maintained as episomes in a large fraction of stably selected clones. Finally, we demonstrate the utility of BAC TG-EMBED by simultaneously labeling three nuclear compartments in 94% of stable clones using a multi-reporter DHFR BAC, constructed with a combination of synthetic biology and BAC recombineering tools. Our extended BAC TG-EMBED method provides a versatile platform for achieving reproducible, stable simultaneous expression of multiple transgenes maintained either as episomes or stably integrated copies.


1984 ◽  
Vol 4 (3) ◽  
pp. 399-406 ◽  
Author(s):  
G D Pennock ◽  
C Shoemaker ◽  
L K Miller

The N-terminal region of the gene encoding polyhedrin, the major occlusion protein of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV), has been fused to DNA encoding Escherichia coli beta-galactosidase. The fused gene was inserted into the AcNPV DNA genome by cotransfection of insect cells with recombinant plasmid DNA and wild-type AcNPV genomic DNA. Recombinant viruses were selected as blue plaques in the presence of a beta-galactosidase indicator, 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside. Studies of one such virus, L1GP-gal3, indicated that the synthesis of beta-galactosidase is temporally controlled beginning late (20 h) in infection after the release of infectious virus particles from the cell. By 48 h postinfection, a remarkably high level of expression is achieved. On the basis of these results, AcNPV should be a useful vector for the stable propagation and expression of passenger genes in a lepidopteran cell background. A generalized transplacement vector that facilitates the construction and selection of recombinant viruses carrying passenger genes under their own promoter control has also been developed.


Author(s):  
Andre Lieber ◽  
Volker Sandig ◽  
Wolfgang Sommer ◽  
Silvia Bähring ◽  
Michael Strauss

1984 ◽  
Vol 4 (3) ◽  
pp. 399-406
Author(s):  
G D Pennock ◽  
C Shoemaker ◽  
L K Miller

The N-terminal region of the gene encoding polyhedrin, the major occlusion protein of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV), has been fused to DNA encoding Escherichia coli beta-galactosidase. The fused gene was inserted into the AcNPV DNA genome by cotransfection of insect cells with recombinant plasmid DNA and wild-type AcNPV genomic DNA. Recombinant viruses were selected as blue plaques in the presence of a beta-galactosidase indicator, 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside. Studies of one such virus, L1GP-gal3, indicated that the synthesis of beta-galactosidase is temporally controlled beginning late (20 h) in infection after the release of infectious virus particles from the cell. By 48 h postinfection, a remarkably high level of expression is achieved. On the basis of these results, AcNPV should be a useful vector for the stable propagation and expression of passenger genes in a lepidopteran cell background. A generalized transplacement vector that facilitates the construction and selection of recombinant viruses carrying passenger genes under their own promoter control has also been developed.


2015 ◽  
Vol 2 (1) ◽  
pp. 96-105 ◽  
Author(s):  
Xiang Chen ◽  
Jing Cui ◽  
Zhengjian Yan ◽  
Hongmei Zhang ◽  
Xian Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document