scholarly journals Color contamination matrix property assessment for improvement of colored smoke PIV

Author(s):  
Yuichi Murai ◽  
Yasufumi Horimoto ◽  
Hyun Jin Park ◽  
Yuji Tasaka

A single-camera color PIV system that can acquire PIV data of three separated layers has been redesigned, purposing improvement of wind tunnel applicability. We target smoke image that has particle-per-pixel values higher than unity. The system constitutes of a high-power color-coding illuminator and a digital color high-speed video camera. RGB values in recorded image involves severe color contaminations due to five optical and digital sequences (Fig. 1). To quantify this, a snapshot calibration is proposed to describe the contamination matrix equation (Eq. (1)). Taking the inverse matrix (Eq. (2)) allows in-plane PIV in each color layer to be accurately implemented. We also derive mathematical limits to operate the colored smoke PIV, which is explained by the matrix property (Eq (3)). Feasibility of the proposed method has been demonstrated by application to a turbulent wake behind a Delta wing (Fig. 2) and also to a boundary layer flow along heated chocolate.

2018 ◽  
Vol 192 ◽  
pp. 02028
Author(s):  
Hassan Zulkifli Abu ◽  
Ibrahim Aniza ◽  
Mohamad Nor Norazman

Small-scale blast tests were carried out to observe and measure the influence of sandy soil towards explosive blast intensity. The tests were to simulate blast impact imparted by anti-vehicular landmine to a lightweight armoured vehicle (LAV). Time of occurrence of the three phases of detonation phase in soil with respect to upward translation time of the test apparatus were recorded using high-speed video camera. At the same time the target plate acceleration was measured using shock accelerometer. It was observed that target plate deformation took place at early stage of the detonation phase before the apparatus moved vertically upwards. Previous data of acceleration-time history and velocity-time history from air blast detonation were compared. It was observed that effects of soil funnelling on blast wave together with the impact from soil ejecta may have contributed to higher blast intensity that characterized detonation in soil, where detonation in soil demonstrated higher plate velocity compared to what occurred in air blast detonation.


2014 ◽  
Vol 782 ◽  
pp. 3-7
Author(s):  
Kenji Shinozaki ◽  
Motomichi Yamamoto ◽  
Kohta Kadoi ◽  
Peng Wen

Solidification cracking during welding is very serious problem for practical use. Therefore, there are so many reports concerning solidification cracking. Normally, solidification cracking susceptibility of material is quantitatively evaluated using Trans-Varestraint test. On the other hand, local solidification cracking strain was tried to measure precisely using in-situ observation method, called MISO method about 30 years ago. Recently, digital high-speed video camera develops very fast and its image quality is very high. Therefore, we have started to observe solidification crack using in site observation method. In this paper, the local critical strain of a solidification crack was measured and the high temperature ductility curves of weld metals having different dilution ratios and different grain sizes to evaluate quantitatively the effects of dilution ratio and grain size on solidification cracking susceptibility by using an improved in situ observation method.


2007 ◽  
Vol 329 ◽  
pp. 761-766 ◽  
Author(s):  
Y. Zhang ◽  
Masato Yoshioka ◽  
Shin-Ichiro Hira

At present, a commercially available magnetic barrel machine equipped with permanent magnets has some faults arising from constructional reason. That is, grinding or finishing ability is different from place to place in the machining region, resulting in the limitation on the region we can use in the container of workpieces. Therefore, in this research, authors made the new magnetic barrel machine equipped with three dimensional (3D) magnet arrangement to overcome these faults. The grinding ability of the new 3D magnetic barrel machine converted was experimentally examined, and compared with that of the traditional magnetic barrel machine. As a result, it was shown that we can use much broader region in the new 3D machine. It was also shown that the grinding ability became higher. The distribution of barrel media in action was recorded by means of a high speed video camera. It was clarified that the media rose up higher and were distributed more uniformly in the container by the effect of the magnet block newly set up. It was supposed that this must be the reason for the above-mentioned improvement of grinding ability.


Author(s):  
P Eriksson ◽  
V Wikström ◽  
R Larsson

In a previous investigation, grease thickener fibres were tracked as they passed through an elastohydrodynamic (EHD) contact in pure rolling using interferometry in a standard ball-and-disc apparatus. In order to capture single thickener fibres, a high-speed video camera was used. Here, the experiments have been repeated introducing different amounts of side slip for different rolling speeds and a faster video camera capable of capturing 4500 frames/s. The contact was lubricated with a continuous supply of grease. Two greases, based on the same synthetic poly(α-olefin) but thickened with Li-12-OH and lithium complex soap respectively, were studied. It was observed that the thickener fibres were stretched both before entering the contact and as they passed through it. Fibres seem to avoid the minimum film thickness regions and, if they enter, the film is restored immediately after passage.


1985 ◽  
Vol 1 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Robert J. Gregor ◽  
Marilyn Pink

As part of an ongoing project to evaluate elite track and field throwers in the United States, the javelin competition was filmed during the 1983 Pepsi Invitational Track Meet. A high-speed video camera (Spin Physics SP2000) was positioned orthogonal to the javelin runway to record the release of all throws. During this competition, Tom Petranoff’s world record (99.72 m) was filmed at 200 fields per second. Subsequent frame-by-frame digitization yielded results consistent with reports in the literature. Release velocity was 32.3 m/s and represents one of the highest values ever reported. Angle of release was .57r, javelin attitude at release was .64r» and angle of attack was .07r. While optimum values for these release parameters, in light of published results, remain open to discussion, the results presented here represent unique information on a world record performance and can serve as a basis of comparison for future performances.


1993 ◽  
Vol 115 (3) ◽  
pp. 461-466 ◽  
Author(s):  
G. Lavergne ◽  
P. Trichet ◽  
P. Hebrard ◽  
Y. Biscos

Liquid sheet break-up in coflowing shear flow is the mean by which liquids are atomized in practical injectors for gas turbine combustors. The present study explores experimentally the mechanisms of liquid sheet instabilities and spray formation. Experiments are conducted on four airblast geometries. A high-speed video camera associated with an image processing unit was used to study the liquid sheet instabilities. A microphone and a frequency analyzer were used to track the disintegration frequency. Instability amplitude and disintegration length of the liquid sheet were measured. A two-component Phase Doppler Particle Analyzer was used to characterize the resultant spray. The spatial distribution of the particle size is influenced by the swirling flow field. These experimental results will be used to assess models of fuel sheet instabilities and disintegration.


CIRP Annals ◽  
2013 ◽  
Vol 62 (1) ◽  
pp. 223-226 ◽  
Author(s):  
Tatsuaki Furumoto ◽  
Takashi Ueda ◽  
Mohd Rizal Alkahari ◽  
Akira Hosokawa

2011 ◽  
Vol 402 ◽  
pp. 407-411 ◽  
Author(s):  
Jacob M. Mchenya ◽  
Sheng Zhuo Zhang ◽  
Song Jing Li

In order to understand the mechanism and get rid of the high-frequency self-excited noise in a hydraulic servo-valve, in this paper, the flow field distribution in the pilot stage of a hydraulic flapper-nozzle servo-valve is investigated. An assembly is prepared representing the construction and working principle of the flow field inside the pilot stage of a hydraulic flapper-nozzle servo-valve. A method of visualization is developed by taking videos for the flow field inside the transparent assembly with a high speed video camera. In this study, at different inlet pressure the high speed video camera was utilized for flow visualization together with computer-assisted image measurement. The shape of the jet flow, the cavitations and vortex flow inside the flow field can be visualized clearly. The proposed method enables to analyze the flow-field in the pilot stage of a hydraulic flapper-nozzle servo-valve by giving useful information for better design.


Sign in / Sign up

Export Citation Format

Share Document