scholarly journals Disposal of waste products from fibrous composite material

2021 ◽  
Author(s):  
G.F. Sagitova ◽  
G.I. Dusmetova ◽  
А.U. Ongalbayeva ◽  
Zh. Shuhanova ◽  
N.E. Botabaev ◽  
...  

The article proposes a method of processing fiberglass to obtain a fibrous component used as reinforcing filler for the manufacture of secondary composite materials. The obtained analytical dependencies can be used to develop the design of the mill elements, as well as to optimize the grinding process When disposing of products made of fibrous composite material, the following scheme is proposed. The proposed analytical method for determining the modes of the grinding process solves the problem of choosing the preferred parameters of the mill operation depending on its functional dimensions and properties of components in a fibrous secondary composite material.

2014 ◽  
Vol 35 (1) ◽  
pp. 3-15
Author(s):  
Stanisław Kucypera

Abstract The aim of this paper is analysis of the possibility of determining the internal structure of the fibrous composite material by estimating its thermal diffusivity. A thermal diffusivity of the composite material was determined by applying inverse heat conduction method and measurement data. The idea of the proposed method depends on measuring the timedependent temperature distribution at selected points of the sample and identification of the thermal diffusivity by solving a transient inverse heat conduction problem. The investigated system which was used for the identification of thermal parameters consists of two cylindrical samples, in which transient temperature field is forced by the electric heater located between them. The temperature response of the system is measured in the chosen point of sample. One dimensional discrete mathematical model of the transient heat conduction within the investigated sample has been formulated based on the control volume method. The optimal dynamic filtration method as solution of the inverse problem has been applied to identify unknown diffusivity of multi-layered fibrous composite material. Next using this thermal diffusivity of the composite material its internal structure was determined. The chosen results have been presented in the paper.


2021 ◽  
Vol 7 (1) ◽  
pp. 085-090
Author(s):  
Sujita Darmo Darmo ◽  
Rudy Sutanto Sutanto

Fibrous composite materials continue to be researched and developed with the long-term goal of becoming an alternative to metal substitutes. Due to the nature of the fiber reinforced composite material, its high tensile strength, and low density compared to metal. In general, the composition of the composite consists of reinforcing fibers and a matrix as the binding material. The potential of natural fibers as a reinforcing composite material is still being developed and investigated. The research that has been done aims to determine the characteristics of the tensile strength of the composite strengthened with Hibiscus tiliaceust bark powder (HTBP) with alkaline NaOH and KOH treatment. The reinforcing material used is HTBP and the matrix is polyester resin, with volume fraction of 5%, 10% and 20% with an alkaline treatment of 5% NaOH and 5% KOH with immersion for 2 hours, 4 hours, 6 hours and 8 hours. Tensile testing specimens and procedures refer to ASTM D3039 standard. The results of this study showed the highest tensile strength of 34.96 MPa in the alkaline treatment of 5% KOH, soaking time of 8 hours with a volume fraction of 10% and the lowest tensile strength of 21.96 MPa of 5% KOH alkaline treatment, soaking time of 6 hours with a volume fraction of 20%. .with 10% volume fraction of 34.96 MPa and the lowest tensile strength was 5% KOH alkaline treatment at 6 hours immersion with 20% volume fraction.


Sign in / Sign up

Export Citation Format

Share Document