scholarly journals Study of tensile strength and morphology of polyester matrix composite materials reinforced Hibiscus tiliaceust bark powder as raw material of rear bumper vehicle

2021 ◽  
Vol 7 (1) ◽  
pp. 085-090
Author(s):  
Sujita Darmo Darmo ◽  
Rudy Sutanto Sutanto

Fibrous composite materials continue to be researched and developed with the long-term goal of becoming an alternative to metal substitutes. Due to the nature of the fiber reinforced composite material, its high tensile strength, and low density compared to metal. In general, the composition of the composite consists of reinforcing fibers and a matrix as the binding material. The potential of natural fibers as a reinforcing composite material is still being developed and investigated. The research that has been done aims to determine the characteristics of the tensile strength of the composite strengthened with Hibiscus tiliaceust bark powder (HTBP) with alkaline NaOH and KOH treatment. The reinforcing material used is HTBP and the matrix is polyester resin, with volume fraction of 5%, 10% and 20% with an alkaline treatment of 5% NaOH and 5% KOH with immersion for 2 hours, 4 hours, 6 hours and 8 hours. Tensile testing specimens and procedures refer to ASTM D3039 standard. The results of this study showed the highest tensile strength of 34.96 MPa in the alkaline treatment of 5% KOH, soaking time of 8 hours with a volume fraction of 10% and the lowest tensile strength of 21.96 MPa of 5% KOH alkaline treatment, soaking time of 6 hours with a volume fraction of 20%. .with 10% volume fraction of 34.96 MPa and the lowest tensile strength was 5% KOH alkaline treatment at 6 hours immersion with 20% volume fraction.

2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


2020 ◽  
Vol 19 (3) ◽  
pp. 187-194
Author(s):  
Oki Kurniawan ◽  
Willy Artha Wirawan ◽  
Akbar Zulkarnain

Abstract The use of composite materials has been developed in the railroad transportation industry sector in Indonesia. For example, PT INKA has used composite materials with fiber glass reinforcement. The purpose of this study is to determine the characteristics of tensile strength and bending strength of the composite material so that it can be proposed to be further developed and utilized by the manufacturing industry, especially the railroad industry. In this study, 4 types of matrix variations were examined, namely epoxy, repoxy, polyester, and bhispenol using fiber glass reinforcement. Tensile strength and bending strength tests were performed in accordance with the ASTM D-638 and the ASTM D-790 standards, respectively. The results of this study indicate that the variation of the matrix is very influential on the tensile strength and bending strength of composite materials. Keywords: composite material, glass fiber, tensile strength, bending strength  Abstrak Penggunaan material komposit mulai banyak dikembangkan di sektor industri trasportasi kereta api di Indone-sia. Sebagai contoh, PT INKA sudah menggunakan material komposit dengan penguat serat gelas. Tujuan penelitian ini adalah untuk mengetahui karakteristik kekuatan tarik dan kekuatan bending material komposit agar dapat diusulkan untuk lebih dikembangkan dan dimanfaatkan oleh industri manufaktur, khususnya industri kereta api. Pada penelitian ini digunakan 4 jenis variasi matriks, yaitu epoxy, repoxy, polyester, dan bhispenol dengan menggunakan penguat serat gelas. Pengujian kekuatan tarik menggunakan standar ASTM D-638 dan pengujian bending menggunakan standar ASTM D-790. Hasil studi ini menunjukkan bahwa variasi matriks sangat berpengaruh pada kekuatan tarik maupun kekuatan bending material komposit. Kata-kata kunci: material komposit, serat gelas, kekuatan tarik, kekuatan bending


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 128
Author(s):  
I Putu Lokantara ◽  
Ngakan Putu Gede Suardana

Tujuan dari penelitian ini adalah untuk menentukan kekuatan tarik dan kekuatan bending biokomposit limbah plastik polypropylene berpenguat serat lidah mertua. Lidah mertua yang digunakan adalah lidah mertua yang pinggirannya daunnya kuning dengan usia yang seragam. Daun lidah mertua direndam dengan metode water retting selama 7 hari dan proses ekstraksi serat dilakukan secara manual. Polypropylene daur ulang yang digunakan berasal dari limbah plastik minuman gelas. Perlakuan kimia serat lidah mertua dengan konsentrasi 5% NaOH dan waktu perendaman 2 jam. Komposit dicetak dengan menggunakan press panas dengan suhu 200oC dan waktu penahanan 2 jam. Komposit dilakukan pengujian tarik dengan menggunakan ASTM D-570 dan uji bending dengan ASTM 790-03. Hasil uji tarik menunjukkan bahwa kekuatan tarik tertinggi pada fraksi volume 35% sebesar 71,606 MPa. Kekuatan tarik meningkat sebesar 28,9% dari fraksi volume 25% ke fraksi volume 35%.  Hasil uji bending menunjukkan bahwa kekuatan bending tertinggi pada fraksi volume 35% sebesar 74,55 MPa. Kekuatan bending meningkat sebesar 22,9% dari fraksi volume 25% ke fraksi volume 35%. Dengan pengamatan foto mikro SEM, ikatan adhesi antara serat dan matrik terjadi dengan baik pada fraksi volume 35%.      The purpose of this study was to determine the tensile strength and bending strength of lidah mertua fiber reinforced polypropylene. Lidah mertua is used whose leaf margins are yellow with a uniform age. Lidah mertua leaves were soaked by water retting method for 7 days. Fiber is extracted manually by hand. Recycled polypropylene used comes from glass beverage plastic waste. The chemical treatment of lidah mertua fibers 5% NaOH and a soaking time of 2 hours. Composites are molded using a hot press with a temperature of 200oC and a holding time of 2 hours. Composite tensile testing was carried out using ASTM D-570 and bending test with ASTM 790-03. Tensile test results showed that the highest tensile strength at 35% volume fraction was 71,606 MPa. Tensile strength increased by 28.9% from 25% volume fraction to 35% volume fraction. Bending test results showed that the highest bending strength at 35% volume fraction was 74.55 MPa. The bending strength increased by 22.9% from the 25% volume fraction to the 35% volume fraction. By observing SEM micro photographs, the bond between the fiber and the matrix occurs well at 35% volume fraction


Author(s):  
Fabio Gori ◽  
Sandra Corasaniti ◽  
Jean-François Ciparisse

The composite is made of a matrix and a fiber-reinforced material to form a non-homogeneous anisotropic material. Thermal behaviour of composite materials is very important in many applications as heat shields and heat guides. The present paper investigates theoretically a composite material made of a silica matrix and a fiber reinforcement made of steel. The steady state effective thermal conductivity in the main directions are calculated theoretically for two extreme thermal assumptions, i.e. parallel isothermal lines and parallel heat flux lines. The effective thermal conductivity of the composite is evaluated for a variable thickness of the reinforcement, i.e. for a variable volume fraction. The anisotropy degree, defined as the ratio between the thermal conductivities along the two main directions, increases with the ratio between the thermal conductivities of the reinforcement material and the matrix. The composite material, made of two homogeneous and isotropic materials, is thermally anisotropic and can be used to drive heat towards colder regions. This phenomenon is very useful when a device, such as a spacecraft, must be thermally protected.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Arief Rizki Fadhillah ◽  
Dadang Hermawan ◽  
Arie Restu Wardhani

The utilization of natural fiber, nowadays, has employed as reinforcement of composite materials. Natural fiber can benefit the composite material because of the characters of fibre which is more environmental friendly, economics, lighter and stronger. There are many natural fibers that can be used as reinforcement of composite materials such as the bark fibers of Hibiscus Tiliaceus. Hibiscus Tiliaceus is one species of Hibiscus Tiliaceus that can be found in the mountains in Indonesia. This study aims to determine the tensile strength of a single fiber in Hibiscus Tiliaceus fiber with the additional various percentage of NaOH in the alkalization treatment. The alkalization treatment analyzes the alkali process of NaOH substance by 3%, 6%, 9%, 12%, and without treatment within the bark of Hibiscus Tiliaceus tree. The treatment was undertaken by soaking the NaOH substance in a duration of 120 minutes. After the NaOH solution was immersed, the bark fiber of Hibiscus Tiliaceus was washed with aquades until the solution reaches a pH of 7. The results of this study show the percentage of NaOH solution in the alkaline immersion process affects the tensile strength of a single fiber on Hibiscus Tiliaceus and the process of NaOH solution which has a release of 6% lignin, cellulose, and semilulose content. In addition, the NaOH treatment with a percentage of 6% can be the standard of the process of alkalizing the bark fiber of Hibiscus Tiliaceus which can be used for composite reinforcement. Therefore, 6% of NaOH can affect the bond between the Hibiscus Tiliaceus fibers as reinforcement and synthetic resins as a matrix which can increase the strength of the composite.


Author(s):  
M. Chomiak

Purpose: of this paper is to develop a new generation of polymer composite materials that would ensure the use of residual and serious environmental problems of polyester-glass laminate waste. Design/methodology/approach: The glass reinforced polyester waste was ground and added to produce new composites. Thermoplastic - high impact polystyrene was selected for the composite matrix. Composites containing 10, 20, 30% by weight of the filler of polyester-glass laminate powder were made. The process of extrusion and subsequent injection was used to prepare the test samples. The influence of the filler on selected properties of composites was evaluated. The physical properties of the filler as well as the processing properties of the mixture as well as the mechanical properties - impact strength and tensile strength of the obtained composites were investigated. Findings: A decrease in tensile strength and impact strength was observed along with an increase in the amount of filler. Research limitations/implications: It would be interesting to carry out further analyzes, in particular with a higher volume fraction of the filler or with a different composite structure, e.g. using PVC as a matrix. The developed research topic is a good material for the preparation of publications of a practical and scientific nature, especially useful in the research and industrial environment. Practical implications: The shredded glass-polyester waste can be used as a filler of polystyrene, however, the resulting composite could be used to produce parts with slightly less responsible functions such as artificial jewelery or toy elements. Originality/value: Obtained results are a new solution a global waste management solution for glass reinforced polyester waste, which may contribute to the sustainable development of the composite materials industry through the partial utilization of waste composites with a duroplastic matrix.


2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2011 ◽  
Vol 22 (1) ◽  
pp. 153 ◽  
Author(s):  
Arnaud Delarue ◽  
Dominique Jeulin

Composite materials containing aggregates of spherical inclusions are studied from 3D images obtained by X-ray microtomography. Using two point statistics in different directions, and the empirical distribution of orientations of pairs of inclusions, interesting details concerning the anisotropy of the distribution of inclusions are obtained and are related to the method of construction for these materials. Some 3D morphological properties, available on the 3D images, give new information on the shape and the distribution of aggregates: tortuosity of shortest paths in the matrix, local volume fraction, geodesic distance function, local histograms of numbers of objects.


2021 ◽  
Vol 9 (2) ◽  
pp. 157
Author(s):  
Syah Banu Putra Sitepu ◽  
Bambang Admadi Harsojuwono ◽  
Amna Hartiati

This research aims to determine the effect of the mixture and the ratio of the composites and their interactions to the characteristics of the bioplastic composites and to determine the mix and ratio of the composites that produce the best characteristics of the bioplastic composites. The experimental design of this study used a randomized block design method. Factor I is a mixture of composite materials consisting of maizena-glucomannan, maizena-chitosan, and maizena-carrageenan. The second factor is the ratio of the composite material mixture which consists of 5 levels, namely 100: 0, 75:25, 50:50, 25:75 and 0: 100. The experiment resulted in 15 treatment combinations and were grouped into 2 groups when the process of making bioplastic composites was obtained, so that 30 experimental units were obtained. Data were analyzed for their diversity and continued with Duncan's multiple comparison test. The observed variables which tensile strength, elongation at break, modulus young, swelling, and biodegradation time. The results showed that the mixture and the ratio of the composites forming a very significant effect on tensile strength, elongation at break, elasticity, and swelling. The interaction has a very significant effect on tensile strength, elasticity and swelling and significantly affects the elongation at break of bioplastic composites. Meanwhile, the mixture and the ratio of the ingredients to form the composites had no significant effect on the biodegradation time. Maizena:glucomannan composite with ratio (25:75) produced the best characteristics of bioplastic composites with tensile strength values of 6.99 MPa, elongation at break of 16.5%, elasticity 42.39 MPa, swelling 78.78% and biodegradable time of 7 days. There are 2 variables that have met the standard, namely: elongation at break of bioplastic composites that meet the plastic Standard SNI 7188.7: 2016 and biodegradation time has met the international plastic standard ASTM 5336 and 3 variables that do not meet the standards, namely: Tensile strength (6,99 MPa) and elasticity (42,39 MPa) do not meet the Plastic Standard SNI 7188.7: 2016 and swelling (39,1%) does not meet international plastic standards (EN 317). Keywords : bioplastic composites, maizena, glucomannan, chitosan, carrageenan


Author(s):  
V. A. Kalinichenko ◽  
A. S. Kalinichenko ◽  
S. V. Grigoriev

To create friction pairs operating in severe working conditions, composite materials are now increasingly used. Composite materials obtained with the use of casting technologies are of interest due to the possibility to manufacture wide range of compositions at low price compared to powder metallurgy. Despite the fact that many composite materials have been sufficiently studied, it is of interest to develop new areas of application and give them the properties required by the consumer. In the present work the composite materials on the basis of silumin reinforced with copper granules were considered. Attention was paid to the interaction between the matrix alloy and the reinforcing phase material as determining the properties of the composite material. The analysis of distribution of the basic alloying elements in volume of composite material and also in zones of the interphases interaction is carried out. The analysis of the possibility of obtaining a strong interphase zone of contact between the reinforcing component and the matrix material without significant dissolution of the reinforcing material is carried out.


Sign in / Sign up

Export Citation Format

Share Document