scholarly journals STUDY OF STRUCTURAL TRANSFORMATIONS AT INCREASED TEMPERATURES IN α-TITANIUM WITH NON-METALLIC TRACE IMPURITIES

2021 ◽  
Vol 161 ◽  
pp. 20-28
Author(s):  
L. I. Kuksenova ◽  
V. I. Savenko ◽  
R. R. Khasbiullin

Structural changes in α-titanium containing non-metallic trace impurities at elevated temperatures have been studied by differential scanning calorimetry and X-ray diffraction analysis. The microstructural and energy characteristics of structural phase transitions have been determined.

2020 ◽  
Vol 62 (7) ◽  
pp. 1064
Author(s):  
В.И. Савенко ◽  
Л.И. Куксенова ◽  
Р.Р. Хасбиуллин ◽  
А.А. Ширяев

Abstract. Using differential scanning calorimetry (DSC), differential thermogravimetry (DTG), mass spectrometry and x- ray diffraction (XRD) analysis, structural phase transitions in alpha-titanium powder containing non-metallic micro-impurities at elevated temperatures were studied. Microstructural and energy characteristics of these transitions are determined.


Author(s):  
Monika K. Krawczyk ◽  
Zbigniew Czapla ◽  
Adam Ingram ◽  
Andrzej Kozdraś ◽  
Tadeusz Lis ◽  
...  

On the basis of thermal analysis (DSC, DTA, DTG), single crystal X-ray diffraction experiments, dielectric studies and optical observation, it is found that the (N2H5)3[CdCl5] crystal exhibits several structural phase transitions. At room temperature, the studied crystal exhibits ferroelastic properties and undergoes phase transition from the monoclinic to the orthorhombic phase on heating above 327 K. Upon subsequent cooling, two structural phase transitions at about 323 and 319 K are observed, where the crystal adopts orthorhombic symmetry. The presented phase transitions are unique due to the fact the first heating run results in different structural changes compared to those observed during cooling and subsequent heating/cooling runs. In the studied crystal, N2H5 + ions and 1D chains built up from {CdCl5}3− units bridged by Cl atoms occur. The phase transitions observed can be associated with reorientation of cations and partial disorder of cations as well as Cl atoms.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Blanca Yamile Rosas ◽  
Alvaro A. Instan ◽  
Karuna Kara Mishra ◽  
S. Nagabhusan Achary ◽  
Ram S. Katiyar

The compound 0.9[KNbO3]-0.1[(BaNi1/2Nb1/2O3−δ] (KBNNO), a robust eco-friendly (lead-free) ferroelectric perovskite, has diverse applications in electronic and photonic devices. In this work, we report the dielectric, ferroelectric, and structural phase transitions behavior in the KBNNO compound using dielectric, X-ray diffraction, and Raman studies at ambient and as a function of temperature. Analyses of X-ray diffraction (XRD) data at room temperature (rtp) revealed the orthorhombic phase (sp. Gr. Amm2) of the compound with a minor secondary NiO cubic phase (sp. Gr. Fm3m). A direct optical band gap Eg of 1.66 eV was estimated at rtp from the UV–Vis reflectance spectrum analysis. Observation of non-saturated electric polarization loops were attributed to leakage current effects pertaining to oxygen vacancies in the compound. Magnetization studies showed ferromagnetism at room temperature (300 K) in this material. XRD studies on KBNNO at elevated temperatures revealed orthorhombic-to-tetragonal and tetragonal-to-cubic phase transitions at 523 and 713 K, respectively. Temperature-dependent dielectric response, being leaky, did not reveal any phase transition. Electrical conductivity data as a function of temperature obeyed Jonscher power law and satisfied the correlated barrier-hopping model, indicating dominance of the hopping conduction mechanism. Temperature-dependent Raman spectroscopic studies over a wide range of temperature (82–673 K) inferred the rhombohedral-to-orthorhombic and orthorhombic-to-tetragonal phase transitions at ~260, and 533 K, respectively. Several Raman bands were found to disappear, while a few Raman modes such as at 225, 270, 289, and 831 cm−1 exhibited discontinuity across the phase transitions at ~260 and 533 K.


1961 ◽  
Vol 5 ◽  
pp. 264-275 ◽  
Author(s):  
F.M. Wahl

AbstractThe high-temperature continuous X-ray diffraction technique has been used at the University of Illinois for several years in our investigation of structural transformations and the development of phase minerals as natural materials are heated. Of particular interest are the effects which chemical impurities have on predicted structural transformations at elevated temperatures.The formation of mullite and beta-cristobalite as they develop from the clay mineral kaolinite is examined by continuous X-ray diffraction up to 1450°C, and the influence of added impurities either to enhance or to retard nucleation of these phase minerals is shown. The 2θ range containing diagnostic peaks of both the initial material and of the transition and phase minerals which develop on heating was continually traversed, thus providing a constant record for comparing structural changes vs. temperature.The furnace used is described in detail, and the effects of added impurities on kaolinite transformations are evaluated to show their importance in controlling the thermal history of a natural material under nonequilibrium conditions.


Author(s):  
Simon Engelbert ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The structures of the equiatomic stannides RERhSn with the smaller rare earth elements Y, Gd-Tm and Lu were reinvestigated on the basis of temperature-dependent single crystal X-ray diffraction data. GdRhSn crystallizes with the aristotype ZrNiAl at 293 and 90 K. For RE = Y, Tb, Ho and Er the HP-CeRuSn type (approximant with space group R3m) is already formed at room temperature, while DyRhSn adopts the HP-CeRuSn type below 280 K. TmRhSn and LuRhSn show incommensurate modulated variants with superspace groups P31m(1/3; 1/3; γ) 000 (No. 157.1.23.1) (γ = 3/8 for TmRhSn and γ = 2/5 for LuRhSn). The driving force for superstructure formation (modulation) is a strengthening of Rh–Sn bonding. The modulation is expressed in a 119Sn Mössbauer spectrum of DyRhSn at 78 K through line broadening.


2002 ◽  
Vol 411 (2) ◽  
pp. 234-239 ◽  
Author(s):  
M Hecker ◽  
W Pitschke ◽  
D Tietjen ◽  
C.M Schneider

2014 ◽  
Vol 70 (a1) ◽  
pp. C58-C58
Author(s):  
Steven Huband ◽  
Anthony Glazer ◽  
Krystian Roleder ◽  
Andrzej Majchrowski ◽  
Pam Thomas

Lead Hafnate undergoes two structural phase transitions as a function of temperature. The first occurs at about 1630C, consisting of a transition from an antiferroelectric orthorhombic Pbam structure [1] to another antiferroelectric orthorhombic phase with an as-yet undetermined space group. The second is to a paraelectric cubic Pm3m structure at 2090C. Dielectric spectroscopy measurements on a single crystal have shown a distinct temperature hysteresis at the orthorhombic to orthorhombic transition [2]. Recently, dielectric measurements on a ceramic sample have shown a much larger temperature hysteresis and following x-ray diffraction measurements, it is suggested that the second orthorhombic phase is in space group A2mm and undergoes another transition to a tetragonal P4mm structure before the cubic transition [3]. We report on the results of an investigation of a PbHfO3crystal using a combination of high-resolution x-ray diffraction and birefringence imaging measurements with the Metripol system. These measurements have been performed as a function of temperature from the room-temperature orthorhombic structure to the high-temperature cubic structure. The results are discussed both in the context of the published work and fundamental understanding of the origin of antiferroelectricity.


2012 ◽  
Vol 68 (4) ◽  
pp. 412-423 ◽  
Author(s):  
Nikolay A. Tumanov ◽  
Elena V. Boldyreva

The effect of pressure on DL-alanine has been studied by X-ray powder diffraction (up to 8.3 GPa), single-crystal X-ray diffraction and Raman spectroscopy (up to ∼ 6 GPa). No structural phase transitions have been observed. At ∼ 1.5–2 GPa, cell parameters b and c become accidentally equal to each other, but the space-group symmetry does not change. There is no phase transition between 1.7 and 2.3 GPa, contrary to what has been reported earlier [Belo et al. (2010). Vibr. Spectrosc. 54, 107–111]. The presence of the second phase transition, which was claimed to appear within the pressure range from 6.0 to 7.3 GPa (Belo et al., 2010), is also argued. The changes in the Raman spectra have been shown to be continuous in all the pressure ranges studied.


2016 ◽  
Vol 5 (3) ◽  
pp. 61
Author(s):  
J. M. Tirado-Gallegos ◽  
D. R. Sepúlveda-Ahumada ◽  
P. B. Zamudio-Flores ◽  
M. L. Rodríguez-Marin ◽  
Francisco Hernández-Centeno ◽  
...  

<p>Packaging increases the shelf life of food and facilitates its handling, transportation and marketing. The main packaging materials are plastics derived from petroleum, but their accumulation has given rise to environmental problems. An alternative is the use of biodegradable materials. In this regard, starch is an excellent choice because it is an abundant and renewable source with film-forming properties. However, the films obtained from starch have some limitations with respect to their mechanical and barrier properties. Several strategies have been developed in order to improve these limitations, ranging from the addition of lipids to the modification of the polymer structure. The aim of this review was propose the use of ellagic acid as a cross-linking agent that may improves the mechanical and barrier properties in films based on exists reports that phenolic compounds interact with starch-based materials decreasing their rate of retrogradation. Furthermore, ellagic acid is a powerful natural antioxidant, which would allow the production of active packaging with antioxidant properties, in addition to the improvement of the mechanical and barrier properties of starch films. In this concern more studies such as Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis are necessary to verify the structural changes and interactions between starch and ellagic acid. We expect extensive use of it in the future of packaging materials.</p>


Sign in / Sign up

Export Citation Format

Share Document