scholarly journals Studies of Optical, Dielectric, Ferroelectric, and Structural Phase Transitions in 0.9[KNbO3]-0.1 [BaNi1/2Nb1/2O3−δ]

Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Blanca Yamile Rosas ◽  
Alvaro A. Instan ◽  
Karuna Kara Mishra ◽  
S. Nagabhusan Achary ◽  
Ram S. Katiyar

The compound 0.9[KNbO3]-0.1[(BaNi1/2Nb1/2O3−δ] (KBNNO), a robust eco-friendly (lead-free) ferroelectric perovskite, has diverse applications in electronic and photonic devices. In this work, we report the dielectric, ferroelectric, and structural phase transitions behavior in the KBNNO compound using dielectric, X-ray diffraction, and Raman studies at ambient and as a function of temperature. Analyses of X-ray diffraction (XRD) data at room temperature (rtp) revealed the orthorhombic phase (sp. Gr. Amm2) of the compound with a minor secondary NiO cubic phase (sp. Gr. Fm3m). A direct optical band gap Eg of 1.66 eV was estimated at rtp from the UV–Vis reflectance spectrum analysis. Observation of non-saturated electric polarization loops were attributed to leakage current effects pertaining to oxygen vacancies in the compound. Magnetization studies showed ferromagnetism at room temperature (300 K) in this material. XRD studies on KBNNO at elevated temperatures revealed orthorhombic-to-tetragonal and tetragonal-to-cubic phase transitions at 523 and 713 K, respectively. Temperature-dependent dielectric response, being leaky, did not reveal any phase transition. Electrical conductivity data as a function of temperature obeyed Jonscher power law and satisfied the correlated barrier-hopping model, indicating dominance of the hopping conduction mechanism. Temperature-dependent Raman spectroscopic studies over a wide range of temperature (82–673 K) inferred the rhombohedral-to-orthorhombic and orthorhombic-to-tetragonal phase transitions at ~260, and 533 K, respectively. Several Raman bands were found to disappear, while a few Raman modes such as at 225, 270, 289, and 831 cm−1 exhibited discontinuity across the phase transitions at ~260 and 533 K.

Author(s):  
Simon Engelbert ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The structures of the equiatomic stannides RERhSn with the smaller rare earth elements Y, Gd-Tm and Lu were reinvestigated on the basis of temperature-dependent single crystal X-ray diffraction data. GdRhSn crystallizes with the aristotype ZrNiAl at 293 and 90 K. For RE = Y, Tb, Ho and Er the HP-CeRuSn type (approximant with space group R3m) is already formed at room temperature, while DyRhSn adopts the HP-CeRuSn type below 280 K. TmRhSn and LuRhSn show incommensurate modulated variants with superspace groups P31m(1/3; 1/3; γ) 000 (No. 157.1.23.1) (γ = 3/8 for TmRhSn and γ = 2/5 for LuRhSn). The driving force for superstructure formation (modulation) is a strengthening of Rh–Sn bonding. The modulation is expressed in a 119Sn Mössbauer spectrum of DyRhSn at 78 K through line broadening.


2021 ◽  
Author(s):  
Mantas Simenas ◽  
Sergejus Balčiūnas ◽  
Sarunas Svirskas ◽  
Martynas Kinka ◽  
Maciej Ptak ◽  
...  

<p>We use a multi-technique approach to determine the phase diagram and molecular cation dynamics of mixed methylammonium-formamidinium MA1-xFAxPbBr3 (0 ≤ x ≤ 1) hybrid perovskites. The calorimetric, ultrasonic and X-ray diffraction experiments show a substantial suppression of the structural phase transitions and stabilization of the cubic phase upon mixing. We use the broadband dielectric and Raman spectroscopies to study the MA and FA cations dynamics in these compounds. The broadband dielectric spectroscopy indicates absence of the MA cation ordering and a gradual increase of the rotation barrier upon mixing. The room-temperature dielectric permittivity substantially decreases as the fraction of the FA cations is increased. No significant changes of the permittivity are detected at temperatures where the dielectric relaxations are absent. We also observe weak signatures of a dipolar glass phase for the highest mixing level (x = 0.5). The Raman spectroscopy supports the dielectric results and reveals additional subtle information about the FA cation dynamics.</p><br>


2018 ◽  
Vol 47 (17) ◽  
pp. 6075-6088 ◽  
Author(s):  
Oliver Janka ◽  
Rolf-Dieter Hoffmann ◽  
Birgit Heying ◽  
Rainer Pöttgen

The germanides YPtGe2 and GdPtGe2 were synthesized from REGe2 precursor compounds and platinum by arc-melting and their structures were studied on the basis of temperature-dependent single crystal X-ray diffraction data.


2021 ◽  
Author(s):  
Mantas Simenas ◽  
Sergejus Balčiūnas ◽  
Sarunas Svirskas ◽  
Martynas Kinka ◽  
Maciej Ptak ◽  
...  

<p>We use a multi-technique approach to determine the phase diagram and molecular cation dynamics of mixed methylammonium-formamidinium MA1-xFAxPbBr3 (0 ≤ x ≤ 1) hybrid perovskites. The calorimetric, ultrasonic and X-ray diffraction experiments show a substantial suppression of the structural phase transitions and stabilization of the cubic phase upon mixing. We use the broadband dielectric and Raman spectroscopies to study the MA and FA cations dynamics in these compounds. The broadband dielectric spectroscopy indicates absence of the MA cation ordering and a gradual increase of the rotation barrier upon mixing. The room-temperature dielectric permittivity substantially decreases as the fraction of the FA cations is increased. No significant changes of the permittivity are detected at temperatures where the dielectric relaxations are absent. We also observe weak signatures of a dipolar glass phase for the highest mixing level (x = 0.5). The Raman spectroscopy supports the dielectric results and reveals additional subtle information about the FA cation dynamics.</p><br>


Author(s):  
Monika K. Krawczyk ◽  
Zbigniew Czapla ◽  
Adam Ingram ◽  
Andrzej Kozdraś ◽  
Tadeusz Lis ◽  
...  

On the basis of thermal analysis (DSC, DTA, DTG), single crystal X-ray diffraction experiments, dielectric studies and optical observation, it is found that the (N2H5)3[CdCl5] crystal exhibits several structural phase transitions. At room temperature, the studied crystal exhibits ferroelastic properties and undergoes phase transition from the monoclinic to the orthorhombic phase on heating above 327 K. Upon subsequent cooling, two structural phase transitions at about 323 and 319 K are observed, where the crystal adopts orthorhombic symmetry. The presented phase transitions are unique due to the fact the first heating run results in different structural changes compared to those observed during cooling and subsequent heating/cooling runs. In the studied crystal, N2H5 + ions and 1D chains built up from {CdCl5}3− units bridged by Cl atoms occur. The phase transitions observed can be associated with reorientation of cations and partial disorder of cations as well as Cl atoms.


Author(s):  
P. Raison ◽  
J. Rebizant ◽  
C. Apostolidis ◽  
G. H. Lander ◽  
A. Delapalme ◽  
...  

AbstractWe have used neutron and X-ray diffraction techniques on both single crystal and polycrystalline samples to examine the symmetry of the unit cell of the organometallic compound uranium tris(cyclopentadienyl)chlorine, U(C


2000 ◽  
Vol 15 (1) ◽  
pp. 19-22 ◽  
Author(s):  
Hiroshi Hayakawa ◽  
Toshimi Takada ◽  
Hirotoshi Enoki ◽  
Etsuo Akiba

Extensive analyses of low-temperature powder x-ray diffraction data for spinel LiMn2O4 (Fd3¯m at room temperature) make it clear that two structural phase transitions occur: first around 285 K from cubic to orthorhombic, second around 65 K from orthorhombic to tetragonal. At temperatures under 285 K, superlattice peaks appear in the diffraction pattern that were successfully indexed by tripling the a and b axes of the spinel unit cell. At 250 K, the unit cell is face-centered orthorhombic, Fddd, F2dd, or Fd2d, with a=24.855(1), b=24.755(2), c=8.2014(3) Å, V=5046.1(4) Å3, Dx=4.284 g/cm3, Z=72. The unit cell at 30 K was confirmed to be body-centered tetragonal I41/amd or I41/a, with a=17.5176(3), c=8.1961(2) Å, V=2515.1(1) Å3, Dx=4.298 g/cm3, Z=36.


2014 ◽  
Vol 70 (a1) ◽  
pp. C58-C58
Author(s):  
Steven Huband ◽  
Anthony Glazer ◽  
Krystian Roleder ◽  
Andrzej Majchrowski ◽  
Pam Thomas

Lead Hafnate undergoes two structural phase transitions as a function of temperature. The first occurs at about 1630C, consisting of a transition from an antiferroelectric orthorhombic Pbam structure [1] to another antiferroelectric orthorhombic phase with an as-yet undetermined space group. The second is to a paraelectric cubic Pm3m structure at 2090C. Dielectric spectroscopy measurements on a single crystal have shown a distinct temperature hysteresis at the orthorhombic to orthorhombic transition [2]. Recently, dielectric measurements on a ceramic sample have shown a much larger temperature hysteresis and following x-ray diffraction measurements, it is suggested that the second orthorhombic phase is in space group A2mm and undergoes another transition to a tetragonal P4mm structure before the cubic transition [3]. We report on the results of an investigation of a PbHfO3crystal using a combination of high-resolution x-ray diffraction and birefringence imaging measurements with the Metripol system. These measurements have been performed as a function of temperature from the room-temperature orthorhombic structure to the high-temperature cubic structure. The results are discussed both in the context of the published work and fundamental understanding of the origin of antiferroelectricity.


Sign in / Sign up

Export Citation Format

Share Document