Behavior of the Two-Phase Gas-Liquid Flow at the Inlet of a Catalytic Reactor

2019 ◽  
Vol 19 (2) ◽  
pp. 123-131
Author(s):  
O. P. Klenov ◽  
A. S. Noskov

The work was aimed at studying the behavior of the two-phase gas-liquid flow at the inlet pipe of a catalytic reactor. Apart from the classical approach using literature flow diagrams, methods of computational hydrodynamics were used for 3D simulation of the space propagation of phases in the pipeline. The results obtained demonstrated non-uniform distribution of the liquid phase through the outlet section of the pipeline and the time-unsteady mass consumption of the liquid phase. The maximal peak consumptions were ca. 3 times as high as the average values. With the data on the flow diagrams, the CFD simulation demonstrated that variations in the gas consumption within the range under study do not cause changes in the behavior of the two-phase flow but an increase in the gas consumption results in smoothening of the non-uniform distribution of the liquid phase at the outlet pipe. The data on the flow behavior are necessary for designing catalytic reactors to provide uniform propagation of the two-phase flow over the catalyst bed, for example, hydrotreatment reactors used in refineries.

Author(s):  
Liping Pang ◽  
Shangmin Li ◽  
Hu Yuan ◽  
Liqiang Duan

Abstract When the supercritical boiler is working at low load during flexible operation, the uneven distribution of the gas-liquid flow at the intermediate header may affect the safety of the water-cooled wall at the vertical parallel panels. In order to improve the uniformity of gas-liquid flow distribution in the water-cooled wall of intermediate header and study the internal flow mechanism, a flute inside the header is applied with parallel vertical parallel channels and experiments under different operating conditions are conducted to verify the effectiveness of this geometrical structure. The flow pattern in the experiment belongs to stratified and wavy flow. Computational fluid dynamic (CFD) simulation is conducted in order to investigate two-phase flow distribution behavior inside a flute header. It was found that the radial gas phase distribution in the flute tube shows a symmetrical relationship, and there are two vortexes in opposite directions. With the increasing distance from the inlet, the uniformity of the gas phase distribution becomes even. The gravity is greater than the drag force, which has effect on the two-phase flow distribution. The gas phase velocity has been improved inside flute section and liquid phase flow has more even flow distribution along annular section. It makes liquid phase sent to far end of flute header. That benefits two-phase flow distribution along 10 parallel channels equally.


1998 ◽  
Vol 120 (1) ◽  
pp. 41-48 ◽  
Author(s):  
G. Lackner ◽  
F. J. S. Alhanati ◽  
S. A. Shirazi ◽  
D. R. Doty ◽  
Z. Schmidt

The presence of free gas at the pump intake adversely affects the performance of an electrical submersible pump (ESP) system, often resulting in low efficiency and causing operational problems. One method of reducing the amount of free gas that the pump has to process is to install a rotary gas separator. The gas-liquid flow associated with the down hole installation of a rotary separator has been investigated to address its overall phase segregation performance. A mathematical model was developed to investigate factors contributing to gas-liquid separation and to determine the efficiency of the separator. The drift-flux approach was used to formulate this complex two-phase flow problem. The turbulent diffusivity was modeled by a two-layer mixing-length model and the relative velocity between phases was formulated based on published correlations for flows with similar characteristics. The well-known numerical procedure of Patankar-Spalding for single-phase flow computations was extended to this two-phase flow situation. Special discretization techniques were developed to obtain consistent results. Special under relaxation procedures were also developed to keep the gas void fraction in the interval [0, 1]. Predicted mixture velocity vectors and gas void fraction distribution for the two-phase flow inside the centrifuge are presented. The model’s predictions are compared to data gathered on a field scale experimental facility to support its invaluable capabilities as a design tool for ESP installations.


Author(s):  
André M. Quintino ◽  
Davi L. L. N. da Rocha ◽  
Roberto Fonseca Jr. ◽  
Oscar M. H. Rodriguez

Abstract Flow pattern is an important engineering design factor in two-phase flow in the chemical, nuclear and energy industries, given its effects on pressure drop, holdup, and heat and mass transfer. The prediction of two-phase flow patterns through phenomenological models is widely used in both industry and academy. In contrast, as more experimental data become available for gas-liquid flow in pipes, the use of data-driven models to predict flow-pattern transition, such as machine learning, has become more reliable. This type of heuristic modeling has a high demand for experimental data, which may not be available in some industrial applications. As a consequence, it may fail to deliver a sufficiently generalized transition prediction. Incorporation of physics in machine learning is being proposed as an alternative to improve prediction and also to reduce the demand for experimental data. This paper evaluates the use of hybrid-physics-data machine learning to predict gas-liquid flow-pattern transition in pipes. Random forest and artificial neural network are the chosen tools. A database of experiments available in the open literature was collected and is shared in this work. The performance of the proposed hybrid model is compared with phenomenological and data-driven machine learning models through confusion matrices and graphics. The results show improvement in prediction performance even with a low amount of data for training. The study also suggests that graphical comparison of flow-pttern transition boundaries provides better understanding of the performance of the models than the traditional metric


Author(s):  
Mehmet Sorgun ◽  
Reza E. Osgouei ◽  
M. Evren Ozbayoglu ◽  
A. Murat Ozbayoglu

Although flow of two-phase fluids is studied in detailed for pipes, there exists a lack of information about aerated fluid flow behavior inside a wellbore. This study aims to simulate gas-liquid flow inside horizontal eccentric annulus using an Eulerian-Eulerian computational fluid dynamics (CFD) model for two-phase flow patterns i.e., dispersed bubble, dispersed annular, plug, slug, churn, wavy annular. To perform experiments using air-water mixtures for various in-situ air and water flow rates, a flow loop was constructed. A digital high speed camera is used for recording each test dynamically for identification of the liquid holdup and flow patterns. Results showed that CFD model predicts frictional pressure losses with an error less than 20% for all two-phase flow patterns when compared with experimental data.


2001 ◽  
Author(s):  
Lu Yuanwei ◽  
Zhou Fangde ◽  
Wang Yueshe ◽  
Qian Huanqun ◽  
Hu Zhihua

Abstract Bend is applied in many industries, which exert an influence on fluid and make the flow complicate. The second flow caused by the bend is strong enough that the flow behind it very long can be affected, so it is hard to make the flow in it steady. The long-term unsteady flow can make the pipe fatigue, so make the tube crack and leak. It is important to improve this situation. In this paper a throttle is built in the exit of the bend to control the non-homogeneous flow inside the bend, which can overcome the disadvantage of bend in industrial application. Through computed the flow field behind the bend by water, we can see that the throttle can improve the flow situation and make the flow steady behind it. Applying this method to the gas-liquid flow, the experimental result showed that the void fraction behind the bend is alike the fully developed flow. It means that the throttle can improve the two-phase flow situation in the invert U bend. At last the gas-liquid flow pattern in-bend was studied by experiment and built the flow pattern map in the vertical parts of the invert U bend. It was found that the flow pattern in the vertical part of invert U bend is different from the fully developed gas-liquid flow in vertical tube. The throttle built in the bend make the unsteady region of two-phase flow being reduced.


Sign in / Sign up

Export Citation Format

Share Document