Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promising Method of its Integrated Processing

2021 ◽  
Vol 21 (6) ◽  
pp. 425-443
Author(s):  
A. V. Miroshnikova ◽  
A. S. Kazachenko ◽  
B. N. Kuznetsov ◽  
O. P. Taran

The review discusses the results of recent studies in the promising field of integrated processing of lignocellulosic biomass – the reductive catalytic fractionation (RCF). The effect of catalysts, cocatalysts, solvents, hydrogen sources and features of lignocellulosic feedstock on the selectivity of monomeric products formation from lignin is considered. RCF processes are performed mostly with the heterogeneous catalysts, which allow implementing the reductive depolymerization of lignin to obtain low-molecular compounds and preserve carbohydrate components of biomass. Among the studied catalysts based on platinum group metals and transition metals, the highest activity is observed for the catalysts containing Pd, Pt, Ru and Ni. Features of the metal also affect the composition of the resulting products. Thus, ruthenium catalysts make it possible to obtain 4-propylguaiacol as the main product, while Ni and Pd – 4-propanolguaiacol. Mo-containing catalysts, owing to their lower hydrogenating activity, can be used to obtain monolignols or their etherified derivatives with the preservation of carbohydrate components of lignocellulosic biomass. However, most efficient in RCF processes are the bifunctional catalysts, which have both the acidic and metallic active sites. Acidic sites promote the cleavage of the ether β-O-4 bonds, whereas metallic sites – the reduction of the formed intermediate compounds. An important aspect of choosing the appropriate catalysts for RCF process is the possibility of their repeated application. The use of a ferromagnetic catalyst or a catalyst basket allows separating the catalyst from the products.

Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 372 ◽  
Author(s):  
Mohammad I. M. Al-Zeer ◽  
Kenneth J. D. MacKenzie

This study presents the synthesis, characteristics and catalytic reactivity of sustainable bifunctional heterogeneous catalysts derived from coal fly ash-based geopolymer, particularly those with a high Ca content (C-class) fly ash. The developed catalysts were synthesized at room temperature and pressure in a simple ecologically-benign procedure and their reactivity was evaluated in the Friedel-Crafts acylation of various arenes. These catalysts can be produced with multilevel porous architecture, and a combination of acidic and redox active sites allowing their use as bifunctional catalysts. The acidic sites (Lewis and Brønsted acidic sites) were generated within the catalyst framework by ion-exchange followed by thermal treatment, and redox sites that originated from the catalytically reactive fly ash components. The developed catalysts demonstrated higher reactivity than other commonly used solid catalysts such as Metal-zeolite and Metal-mesoporous silicate, heteropolyacids and zeolite imidazole frameworks (ZIF).


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 861
Author(s):  
Christiaan H. L. Tempelman ◽  
Ryan Oozeerally ◽  
Volkan Degirmenci

Lignocellulosic biomass, a cheap and plentiful resource, could play a key role in the production of sustainable chemicals. The simple sugars contained in the renewable lignocellulosic biomass can be converted into commercially valuable products such as 5-hydroxymethyl furfural (HMF). A platform molecule, HMF can be transformed into numerous chemical products with potential applications in a wide variety of industries. Of the hexoses contained in the lignocellulosic biomass, the successful production of HMF from glucose has been a challenge. Various heterogeneous catalysts have been proposed over the last decade, ranging from zeolites to metal organic frameworks. The reaction conditions vary in the reports in the literature, which makes it difficult to compare catalysts reported in different studies. In addition, the slight variations in the synthesis of the same material in different laboratories may affect the activity results, because the selectivity towards desired products in this transformation strongly depends on the nature of the active sites. This poses another difficulty for the comparison of different reports. Furthermore, over the last decade the new catalytic systems proposed have increased profoundly. In this article, we summarize the heterogeneous catalysts: Metal Organic Frameworks (MOFs), zeolites and conventional supported catalysts, that have been reported in the recent literature and provide an overview of the observed catalytic activity, in order to provide a comparison.


Author(s):  
Alexis T. Bell

Heterogeneous catalysts, used in industry for the production of fuels and chemicals, are microporous solids characterized by a high internal surface area. The catalyticly active sites may occur at the surface of the bulk solid or of small crystallites deposited on a porous support. An example of the former case would be a zeolite, and of the latter, a supported metal catalyst. Since the activity and selectivity of a catalyst are known to be a function of surface composition and structure, it is highly desirable to characterize catalyst surfaces with atomic scale resolution. Where the active phase is dispersed on a support, it is also important to know the dispersion of the deposited phase, as well as its structural and compositional uniformity, the latter characteristics being particularly important in the case of multicomponent catalysts. Knowledge of the pore size and shape is also important, since these can influence the transport of reactants and products through a catalyst and the dynamics of catalyst deactivation.


Author(s):  
Jeffrey D. Rimer ◽  
Aseem Chawla ◽  
Thuy T. Le

Crystal engineering relies upon the ability to predictively control intermolecular interactions during the assembly of crystalline materials in a manner that leads to a desired (and predetermined) set of properties. Economics, scalability, and ease of design must be leveraged with techniques that manipulate the thermodynamics and kinetics of crystal nucleation and growth. It is often challenging to exact simultaneous control over multiple physicochemical properties, such as crystal size, habit, chirality, polymorph, and composition. Engineered materials often rely upon postsynthesis (top-down) processes to introduce properties that would otherwise be challenging to attain through direct (bottom-up) approaches. We discuss the application of crystal engineering to heterogeneous catalysts with a focus on four general themes: ( a) tailored nanocrystal size, ( b) controlled environments surrounding active sites, ( c) tuned morphology with well-defined facets, and ( d) hierarchical materials with disparate pore size and active site distributions. We focus on nonporous materials, including metals and metal oxides, and two classes of porous materials: zeolites and metal organic frameworks. We review novel synthesis methods involving synergistic experimental and computational design approaches, the challenges facing catalyst development, and opportunities for future advancement in crystal engineering.


2020 ◽  
Vol 10 (11) ◽  
pp. 1902106 ◽  
Author(s):  
Rahman Daiyan ◽  
Wibawa Hendra Saputera ◽  
Hassan Masood ◽  
Josh Leverett ◽  
Xunyu Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document