scholarly journals Simultaneous Determination of Levocetirizine and Pseudoephedrine in Dog Plasma by Liquid Chromatography-Mass Spectrometry in the Presence of Dextrocetirizine

2012 ◽  
Vol 15 (4) ◽  
pp. 519 ◽  
Author(s):  
Jae Kuk Ryu ◽  
Sun Dong Yoo

Purpose. This study describes the development of a rapid and sensitive LC-ESI-MS assay for simultaneous enantioselective determination of levocetirizine and pseudoephedrine in dog plasma in the presence of dextrocetirizine. Methods. Separations were achieved on an Ultron ES-OVM chiral column using the mobile phase consisting of 10 mM aqueous NH4OAc (pH 6.6) and acetonitrile (9:1 v/v). Results. The retention times of pseudoephedrine, dextrocetirizine, levocetirizine and diazepam (internal standard) were 5.2, 8.3, 9.6 and 11.6 min, respectively, and the total run time was less than 15 min. The assay was validated to demonstrate the linearity, accuracy and precision, recovery and stability. The calibration curves were linear over the concentration range from 1 – 200 ng/mL for levocetirizine and from 5 – 1000 ng/mL for pseudoephedrine. Conclusions. The developed assay was successfully applied to a pharmacokinetic study after oral administration of the racemic cetirizine (0.5 mg/kg, or 0.25 mg/kg as levocetirizine) and pseudoephedrine (12 mg/kg) in the dog. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Author(s):  
Narottam Pal ◽  
Avanapu Srinivasa Rao ◽  
Pigilli Ravikumar

<p><strong>Objective</strong>:<strong> </strong>To develop a new method and validate the same for the determination of Febuxostat (FBS) in human plasma by liquid chromatography–mass spectrometry (LCMS).</p><p><strong>Methods</strong>:<strong> </strong>The present method utilized reversed-phase high-performance liquid chromatography with tandem mass spectroscopy. Febuxostat D9 (FBS D9) was used as internal standard (IS). The analyte and internal standard were separated from human plasma by using solid phase extraction method. Zorbax Eclipse XDB, C<sub>8</sub>, 100 mm x 4.6 mm, 3.5 µm column was used and HPLC grade acetonitrile, 5 millimolar (mM) ammonium format (80: 20, v/v) as mobile phase, detected by mass spectrometry operating in positive ion and multiple reaction monitoring modes.</p><p><strong>Results</strong>:<strong> </strong>The parent and production transitions for FBS and internal standard were at m/z 317.1→261.0 and 326.1→262.0 respectively. The method was validated for system suitability, specificity, carryover effect, linearity, precision, accuracy, matrix effect, sensitivity and stability. The linearity range was from 20.131 ng/ml to10015. 534 ng/ml with a correlation coefficient of 0.999. Precision results (%CV) across six quality control samples were within the limit. The percentage recovery of FBS and internal standard from matrix samples was found to be 76.57% and 75.03% respectively.</p><p><strong>Conclusion</strong>:<strong> </strong>Present study describes new LC-MS method for the quantification of FBS in a pharmaceutical formulation. According to validation results, it was found to be a simple, sensitive, accurate and precise method and also free from any kind of interference. Therefore the proposed analytical method can be used for routine analysis for the estimation of FBS in its formulation.</p>


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1925 ◽  
Author(s):  
Binbin Cui ◽  
Jing Yang ◽  
Zhibin Wang ◽  
Chengcui Wu ◽  
Hongrui Dong ◽  
...  

This study has developed a sensitive and simple ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of corydaline, dehydrocorydaline, tetrahydropalmatine, protopine, palmatine, tetrahydroberberine, columbamine, berberine, coptisine and berberrubine in beagle dog plasma after the oral administration of the Corydalis yanhusuo W.T. Wang and Yuanhuzhitong tablets. Chromatographic separation was achieved on an Agilent Eclipse Plus C18 RRHD column (1.8 µm, 50 × 2.1 mm) using a gradient elution program with a mobile phase consisting of acetonitrile and water containing 0.1% formic acid at a flow rate of 0.3 mL/min. A tandem mass spectrometric detection was conducted by multiple reaction monitoring (MRM) mode via an electrospray ionization source in the positive mode. The calibration curves of all analytes showed good linear (r2 > 0.9800). The intra-day and inter-day precisions were less than 15% and the accuracies were within ±15%. The extraction recoveries conformed to the acceptable range. And there was no interference of endogenous substances in the sensitive assay method. All analytes were proven to be stable during sample storage and analysis procedures. The pharmacokinetic study indicated that the Yuanhuzhitong tablets could get a better absorption than Corydalis yanhusuo W.T. Wang.


Author(s):  
NARMADA PALNATI ◽  
NALINI KOTAPATI ◽  
GOPAL VAIDYANATHAN

Objective: The objective of the study was to develop and validate a simple, accurate, and sensitive liquid chromatography–mass spectrometry (LC–MS)/MS method for the determination of lapatinib a dual tyrosine kinase inhibitor in rat plasma using gefitinib as internal standard. Methods: An Inertsil ODS column (50 mm×4.6 mm×5 μm) was used for separation with isocratic elution of 10 mM ammonium formate-acetonitrile (5:95 v/v). Analyte and internal standard were extracted from 50 μl of plasma using tertiary butyl methyl ether followed by subsequent reconstitution in a mixture of water-acetonitrile. Results: The extraction recoveries were 95% and 98% for lapatinib and gefitinib, respectively. The lower limit of quantification was 5 ng/ml with a precision of 6.2% and accuracy of 108%. The response was found to be linear over the range of 5–1000 ng/ml with a correlation coefficient of 0.999. The intraday and interday precision expressed as relative standard deviation was <15%. Conclusion: This validated method was applied to the pharmacokinetic study in Wistar rats. The proposed bioanalytical LC–MS/MS method for lapatinib is a simple, sensitive, and accurate to quantify the concentrations in rat plasma.


2020 ◽  
pp. 43-47
Author(s):  
D. A. Farmakovsky

There was developed a method for quantitation of the drugs which could be effective for COVID-19 treatment. Using tandem liquid mass-spectrometry it is possible to simultaneously quantify with high accuracy and precision up to 9 medicines in human plasma. This method could be used for new drug development as well as for clinical trials and therapeutic drug monitoring in real clinical practice.


2004 ◽  
Vol 87 (4) ◽  
pp. 961-964 ◽  
Author(s):  
Michael S Young ◽  
Kevin M Jenkins ◽  
Claude R Mallet

Abstract In response to recent discoveries of acrylamide in heated foods, a solid-phase extraction and cleanup protocol was developed for the determination of acrylamide in fried or baked potato samples by liquid chromatography/mass spectrometry (LC/MS). The analyte was extracted from the matrix by using 2M NaCl, and an aliquot of the initial extract was loaded onto a reversed-phase cartridge. After the analyte was eluted from the cartridge, the eluate was cleaned up on a mixed-mode cation-exchange cartridge. The eluate was then evaporated, and the residue was reconstituted in mobile phase before LC/MS analysis. Recoveries, based on the recovery of an added internal standard, ranged from 96 to 101% with relative standard deviations (RSDs) of 5–11%. The response was linear for a concentration range of 100–2000 ng/g with a coefficient of determination (R2)of 0.992 (n = 25). An interday study showed good accuracy and precision of the method over a 3-day period with a recovery of 98% and an RSD of 9.5% (n = 15). The analyses of 6 potato chip samples showed concentrations of incurred acrylamide ranging from 260 to 1500 ng/g.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Wei Chen ◽  
Yafei Shi ◽  
Shuya Qi ◽  
Haiyan Zhou ◽  
Chunyu Li ◽  
...  

In the present study, we developed and validated a rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of lorlatinib in mouse serum and tissue samples, and such a method was successfully applied to investigate the pharmacokinetic study and tissue distribution of lorlatinib after oral administration. Samples were processed with methanol to precipitate protein and extract drugs, and Afatinib-d6 was used as the internal standard (IS). For LC-MS/MS analysis, compounds were separated on a C18 column by gradient elution (0.1% of formic acid and methanol) at 0.5 mL/min in the positive-ion mode with m/z 407.28 [M + H]+ for lorlatinib and m/z 492.10 [M + H]+ for IS. Good linearity was observed within the calibration ranges. Selectivity, accuracy (−6.42% to 8.84%), precision (1.69% to 10.98%), recoveries (91.4% to 115.0%), and matrix effect (84.2% to 110.6%) were all within the acceptable ranges. After oral administration, serum concentration of lorlatinib quickly achieved the maximal concentration (2,705.683 ± 539.779 μg/L) at 0.625 ± 0.231 h. The highest concentration was detected in the liver (3,153.93 ng/100 mg), followed by the stomach (2,159.92 ng/100 mg) and the kidney (548.83 ng/100 mg). In conclusion, a simple and rapid detection method was established and validated for determination of lorlatinib in blood and tissue samples of mouse. The pharmacokinetic study and tissue distribution of lorlatinib were successfully investigated using this method.


Sign in / Sign up

Export Citation Format

Share Document