scholarly journals Climate change and disasters: analysis of the Brazilian regional inequality

2020 ◽  
Vol 11 (3) ◽  
pp. 260-296
Author(s):  
Letícia Palazzi Perez ◽  
Saulo Rodrigues-Filho ◽  
José Antônio Marengo ◽  
Diogo Victor Santos ◽  
Lucas Mikosz

One of the main consequences of climate change in Brazil is the increase in the occurrence of extreme rainfall, which in turn trigger Hydrometeorological disasters; the Brazilian continental dimension, the regional characteristics of biomes and socioeconomic inequality are conditioning factors for the impacts of extreme events in the country.  This work analyzes Brazil’s socioeconomic and urban infrastructure vulnerability, combined with the regional exposure of the population, based on disasters observed and future scenarios for the occurrence of rainfall extremes. As a result, it points out that climate change impact differently on large Brazilian regions, due to population density and the poor quality of urban infrastructure services. 

2022 ◽  
Author(s):  
Sintayehu Kare ◽  
Abera Alemu ◽  
Melese Mulugeta ◽  
Zerhun Ganewo

Abstract BackgroundBiomass is the most dominant source of energy for both food cooking and lighting in rural parts of Ethiopia. Energy conversions are carried out in open fires using inefficient traditional stoves, results in poor quality of life due to smoking-related health outcomes, and consume a large quantity of wood. This resulted in increased costs of health and cutting trees which facilities climate change. To change the situation, improved cooking stoves (ICS) have been introduced through youth cooperatives in the study area.Objective The study examined the major sources of energy for the rural households, evaluate the health and related benefits of using improved cook stove and assessing the determinants for its adoption.MethodData were collected from 344 households using a questionnaire in supplement with interview schedule. The collected data were analyzed using both descriptive and econometric models.ResultsThe findings of the study showed that only 22.97% of the respondents adopted the ICS whereas the vast majority (67.03%) still rely on traditional stoves that are highly inefficient. The positive and significant variables in predicting the adoption of ICS were the educational level of household head (OR 1.23; CI at 95% 0.029-0.040), access to ICS (OR 5.88; CI at 95% 1.05-2.48), affordability (OR 2.31; CI at 95% 0.11-1.56) and demonstration about the stove (OR 6.74; CI at 95% 1.13-2.68). Family size (OR 0.74; CI at 95% -0.45-0.12) and Availability of firewood (OR 0.27; CI at 95% -2.00-.56) significantly and negatively affected the adoption of the ICS.ConclusionsLow adoption levels of ICS were found in the study area. This has been triggered by socio-economic, institutional, financial, and resource endowments. Therefore, it is recommended that increasing access to improved stoves, diversifying income sources, creating awareness about ICS health benefits, climate changes, and providing reasonable prices will facilitate its adoption.


2021 ◽  
Vol 169 (3-4) ◽  
Author(s):  
Linh N. Luu ◽  
Paolo Scussolini ◽  
Sarah Kew ◽  
Sjoukje Philip ◽  
Mugni Hadi Hariadi ◽  
...  

AbstractIn October 2020, Central Vietnam was struck by heavy rain resulting from a sequence of 5 tropical depressions and typhoons. The immense amount of water led to extensive flooding and landslides that killed more than 200 people, injured more than 500 people, and caused direct damages valued at approximately 1.2 billion USD. Here, we quantify how the intensity of the precipitation leading to such exceptional impacts is attributable to anthropogenic climate change. First, we define the event as the regional maximum of annual maximum 15-day average rainfall (Rx15day). We then analyse the trend in Rx15day over Central Vietnam from the observations and simulations in the PRIMAVERA and CORDEX-CORE ensembles, which pass our evaluation tests, by applying the generalised extreme value (GEV) distribution in which location and scale parameters exponentially covary with increasing global temperatures. Combining these observations and model results, we find that the 2020 event, occurring about once every 80 years (at least 17 years), has not changed in either probability of occurrence (a factor 1.0, ranging from 0.4 to 2.4) or intensity (0%, ranging from −8 to +8%) in the present climate in comparison with early-industrial climate. This implies that the effect of human-induced climate change contributing to this persistent extreme rainfall event is small compared to natural variability. However, given the scale of damage of this hazard, our results underline that more investment in disaster risk reduction for this type of rainfall-induced flood hazard is of importance, even independent of the effect of anthropogenic climate change. Moreover, as both observations and model simulations will be extended with the passage of time, we encourage more climate change impact investigations on the extreme in the future that help adaptation and mitigation plans and raise awareness in the country.


2019 ◽  
Vol 51 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Wei Lu ◽  
Xiaosheng Qin

Abstract Urban areas are becoming increasingly vulnerable to extreme storms and flash floods, which could be more damaging under climate change. This study presented an integrated framework for assessing climate change impact on extreme rainfall and urban drainage systems by incorporating a number of statistical and modelling techniques. Starting from synthetic future climate data generated by the stochastic weather generator, the simple scaling method and the Huff rainfall design were adopted for rainfall disaggregation and rainfall design. After having obtained 3-min level designed rainfall information, the urban hydrological model (i.e., Storm Water Management Model) was used to carry out the runoff analysis. A case study in a tropical city was used to demonstrate the proposed framework. Particularly, the impact of selecting different general circulation models and Huff distributions on future 1-h extreme rainfall and the performance of the urban drainage system were investigated. It was revealed that the proposed framework is flexible and easy to implement in generating temporally high-resolution rainfall data under climate model projections and offers a parsimonious way of assessing urban flood risks considering the uncertainty arising from climate change model projections, downscaling and rainfall design.


2022 ◽  
pp. 1278-1292
Author(s):  
Joan Mwihaki Nyika

The effects of climate change continues to be a growing modern-day challenge. Climate change-induced heat stress disrupts reproductive and fertility systems in livestock. In males, it modifies the physiology of the spermatogenic cycle resulting to poor quality semen and high prevalence of secondary sperm defects. In female livestock, heat stress decreases the production of gonadotrophins, results to hormonal imbalance, decreases the quality of oocytes, and lengthens the oestrous period leading to infertility. These effects can be reversed through genetic modifications, nutritive supplementation, physical cooling mechanisms, and hormonal therapies. The successful implementation of the ameliorative strategies is pegged on improved research and their combined administration. Ultimately, climate change mitigation and adaptation are indispensable to overcome fertility problems in livestock among other environmental effects of the climate variations.


Sign in / Sign up

Export Citation Format

Share Document