scholarly journals SPECIES COMPOSITION OF ASSOCIATIONS AND RELATIONSHIPS BETWEEN MICROORGANISMS ISOLATED FROM OSTEOMYELITIS FOCUS

2021 ◽  
Vol 29 (2) ◽  
pp. 183-190
Author(s):  
I.V. Shipitsyna ◽  
◽  
E.V. Osipova ◽  
A.A. Natalskiy ◽  
A.V. Pavlov ◽  
...  

Objective. To determine the species composition of the associations isolated from osteomyelitis foci and to study the character of associate relationships based on the biofilm-forming ability data. Methods. The microbiological study included clinical isolates (n=184) obtained from associations (n=88) during primary inoculations from wounds and fistulas of patients (n= 88) with chronic osteomyelitis of long tubular bones. In order to obtain an associative biofilm in vitro, the cultures of competing bacterial strains were daily mixed in 1:1 ratio. The biofilms were grown on the surface of polystyrene plates with subsequent determination of the level of biofilm formation in 24 and 48 hours. Thecoefficient of relationship (CR) was calculated to evaluate the synergistic, neutral and antagonistic relationships between bacteria in the biofilms. Results. The associations of staphylococcus with gram-negative bacteria were most frequently recovered from osteomyelitis foci. On the 1st day of the experiment, 38,6 % of associations had a moderate biofilm-forming ability, and besides, associations of gram-positive + gram-negative bacteria were observed in 36,4%; 42,1% of associations had a low biofilm-forming ability; 19,3% - had a high biofilm-forming ability. After 48 hours the percentage of mild adhesive strains remained at the same level - 38,6%, as for the low adhesive ones it decreased to 36,4%, high adhesive - increased up to 25%. Most bacterial associations manifested antagonistic relationships. Synergism in biofilm-formingby the association of S. aureus + P. aeruginosa was observed in 2 cases,while the level of film-forming was high as on the first and the second day of the study. In several associations it transformed from antagonistic to synergistic or neutral relationships. Conclusion. It has ben established that among the identified associations, the largest specific weight falls on the associations of gram-positive + gram-negative bacteria , while S. aureus is one of the most common components. These associations were noted to have high and mild activity of biofilm -forming on the surface of polystyrene plates. Relationships between the microorganisms isolated from osteomyelitis foci in associations, as a rule, are antagonistic. What this paper adds For the first time, the nature of the relationship between microorganisms in the composition of associations isolated from the osteomyelitis focus has been studied on the basis of biofilm-forming ability data. It has been established that in microbiocenosis of the osteomyelitis foci, the greatest specific weight falls on the associations of S. aureus with gram-negative bacteria. These associations have a high and moderate activity of biofilm formation on the surface of polystyrene plates. The relationships between microorganisms isolated from the osteomyelitis focus as part of associations are usually antagonistic.

2020 ◽  
Vol 18 (1) ◽  
pp. 591-607
Author(s):  
Hanan A. Althobiti ◽  
Sami A. Zabin

AbstractThe purpose of this work was to prepare Schiff base ligands containing quinoline moiety and using them for preparing Cu(ii) and Zn(ii) complexes. Four bidentate Schiff base ligands (SL1–SL4) with quinoline hydrazine scaffold and a series of mononuclear Cu(ii) and Zn(ii) complexes were successfully prepared and characterized. The in vitro antibacterial and antifungal potential experimentation revealed that the ligands exhibited moderate antibacterial activity against the Gram-positive bacterial types and were inactive against the Gram-negative bacteria and the fungus strains. The metal complexes showed some enhancement in the activity against the Gram-positive bacterial strains and were inactive against the Gram-negative bacteria and the fungus strains similar to the parent ligands. The complex [Cu(SL1)2] was the most toxic compound against both Gram-positive S. aureus and E. faecalis bacteria. The in silico physicochemical investigation revealed that the ligand SL4 showed highest in silico absorption (82.61%) and the two complexes [Cu(SL4)2] and [Zn(SL4)2] showed highest in silico absorption with 56.23% for both compounds. The in silico pharmacokinetics predictions showed that the ligands have high gastrointestinal (GI) absorption and the complexes showed low GI absorption. The ligands showed a good bioavailability score of 0.55 where the complexes showed moderate to poor bioavailability.


Author(s):  
Ahmed T. Sulaiman ◽  
Susan W. Sarsam

A new series of N-acyl hydrazones (4a-g) derived from indole-3-propionic acid (IPA) were synthesized. These N-acyl hydrazones were prepared by the reaction of 3-(1H-indol-3-yl) propane hydrazide and aldehyde in the existence of glacial acetic acid as a catalyst. 1HNMR and FT-IR analyses were used to identify the synthesized compounds and they were in vitro evaluated as antibacterial agents against six different types of microorganisms by using well diffusion method. All the tested N-acyl hydrazones (4a-g) displayed moderate activity against the Gram-negative E.coli, comparable to that of Amoxicillin. Some of the tested N-acyl hydrazones also exhibited intermediate activity against some of the examined Gram-positive and Gram-negative bacteria. While no activity was exhibited by any of the examined compounds against the Gram-positive S. aureus.


2014 ◽  
Vol 79 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Anca Stana ◽  
Brînduşa Tiperciuc ◽  
Mihaela Duma ◽  
Adrian Pîrnău ◽  
Philippe Verité ◽  
...  

A series of new 5-(2,6-dichlorobenzylidene)thiazolidine-2,4-dione and 5-(4-methoxy-benzylidene)thiazolidine-2,4-dione derivatives (3a-h and 5a-h) were synthesized starting from 5-arylidene-thiazolidine-2,4-dione and ?-halo-ketones. The structural elucidation of the newly synthesized compounds was based on elemental analysis and spectroscopic data (MS, 1H-NMR, 13C-NMR). The synthesized compounds were screened for their antimicrobial activities against several pathogenic strains of Gram-positive and Gram-negative bacteria and one fungal strain (Candida albicans), assessed in vitro as growth inhibition diameters. Some of them displayed better inhibitory activities than that of the reference drug against the Gram-positive S. aureus, B. cereus, L. monocytogenes bacterial strains, and showed good antifungal activity against C. albicans, while the antibacterial activity against Gram-negative E. coli and S. typhimurium bacterial strains was moderate.


2008 ◽  
Vol 73 (12) ◽  
pp. 1153-1160 ◽  
Author(s):  
S.O. Podunavac-Kuzmanovic ◽  
V.M. Leovac ◽  
D.D. Cvetkovic

The antibacterial activities of cobalt(II) complexes with two series of benzimidazoles were evaluated in vitro against three Gram-positive bacterial strains (Bacillus cereus, Staphylococcus aureus, and Sarcina lutea) and one Gram-negative isolate (Pseudomonas aeruginosa). The minimum inhibitory concentration was determined for all the complexes. The majority of the investtigated complexes displayed in vitro inhibitory activity against very persistent bacteria. They were found to be more active against Gram-positive than Gram-negative bacteria. It may be concluded that the antibacterial activity of the compounds is related to the cell wall structure of the tested bacteria. Comparing the inhibitory activities of the tested complexes, it was found that the 1-substituted- -2-aminobenzimidazole derivatives were more active than complexes of 1-substituted- 2-amino-5,6-dimethylbenzimidazoles. The effect of chemical structure on the antibacterial activity is discussed.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hessa H. Al-Rasheed ◽  
Monirah Al Alshaikh ◽  
Jamal M. Khaled ◽  
Naiyf S. Alharbi ◽  
Ayman El-Faham

Novel series of 4,6-disubstituted-1,3,5-triazines containing hydrazone derivatives were synthesized employing ultrasonic irradiation and conventional heating. The ultrasonication gave the target products in higher yields and purity in shorter reaction time compared with the conventional method. IR, NMR (H 1 and C 13), elemental analysis, and LC-MS confirmed the structures of the new products. The antimicrobial and antifungal activities were evaluated for all the prepared compounds against some selected Gram-positive and Gram-negative bacterial strains. The results showed that only two compounds 7i (pyridine derivative) and 7k (4-chlorobenzaldehyde derivative) displayed biological activity against some Gram-positive and Gram-negative bacteria, while the rest of the tested compounds did not display any antifungal activity.


2021 ◽  
Vol 206 (Supplement 3) ◽  
Author(s):  
Manish Narasimman ◽  
Gregory Plano ◽  
Jesse Ory ◽  
Sara Schesser Bartra ◽  
Ranjith Ramasamy

Sign in / Sign up

Export Citation Format

Share Document