scholarly journals In-vitro antibacterial activity of Elytraria acaulis roots against some gram-positive and gram-negative bacterial strains

2020 ◽  
Vol 9 (5) ◽  
pp. 2218-2225
Author(s):  
Simmi Singh ◽  
Rajesh Nigam ◽  
Ambika Sharma ◽  
Ashish Kumar ◽  
Vijay Laxmi
2021 ◽  
Vol 14 (5) ◽  
pp. 399
Author(s):  
Lamya H. Al-Wahaibi ◽  
Amer A. Amer ◽  
Adel A. Marzouk ◽  
Hesham A.M. Gomaa ◽  
Bahaa G. M. Youssif ◽  
...  

A novel series of ciprofloxacin hybrids comprising various heterocycle derivatives has been synthesized and structurally elucidated using 1H NMR, 13C NMR, and elementary analyses. Using ciprofloxacin as a reference, compounds 1–21 were screened in vitro against Gram-positive bacterial strains such as Staphylococcus aureus and Bacillus subtilis and Gram-negative strains such as Escherichia coli and Pseudomonas aeruginosa. As a result, many of the compounds examined had antibacterial activity equivalent to ciprofloxacin against test bacteria. Compounds 2–6, oxadiazole derivatives, were found to have antibacterial activity that was 88 to 120% that of ciprofloxacin against Gram-positive and Gram-negative bacteria. The findings showed that none of the compounds tested had antifungal activity against Aspergillus flavus, but did have poor activity against Candida albicans, ranging from 23% to 33% of fluconazole, with compound 3 being the most active (33% of fluconazole). The most potent compounds, 3, 4, 5, and 6, displayed an IC50 of 86, 42, 92, and 180 nM against E. coli DNA gyrase, respectively (novobiocin, IC50 = 170 nM). Compounds 4, 5, and 6 showed IC50 values (1.47, 6.80, and 8.92 µM, respectively) against E. coli topo IV in comparison to novobiocin (IC50 = 11 µM).


Author(s):  
L. Rajanna ◽  
N. Santhosh Kumar ◽  
N. S. Suresha ◽  
S. Lavanya

The in vitro antibacterial assay was carried out against both Gram positive (B. cerus and S. aureus) and Gram negative (E. coli and K. pneumoniae) bacteria. Floral petals of 20 different species of plants were collected and tested for antibacterial activity. The result showed that the petals were active against both Gram positive and Gram negative. Out of 20 floral petals tested, 19 floral petals exhibited antibacterial activity against selected bacterial strains. The minimal inhibitory zone of floral petal discs against human pathogenic bacteria varies from 2 – 6 mm. Rosa carolina and Ruellia tuberosa showed significance inhibition zone for all the bacterial strains while Lantana camara does not show inhibition zone for any of these pathogenic bacteria.


2008 ◽  
Vol 73 (12) ◽  
pp. 1153-1160 ◽  
Author(s):  
S.O. Podunavac-Kuzmanovic ◽  
V.M. Leovac ◽  
D.D. Cvetkovic

The antibacterial activities of cobalt(II) complexes with two series of benzimidazoles were evaluated in vitro against three Gram-positive bacterial strains (Bacillus cereus, Staphylococcus aureus, and Sarcina lutea) and one Gram-negative isolate (Pseudomonas aeruginosa). The minimum inhibitory concentration was determined for all the complexes. The majority of the investtigated complexes displayed in vitro inhibitory activity against very persistent bacteria. They were found to be more active against Gram-positive than Gram-negative bacteria. It may be concluded that the antibacterial activity of the compounds is related to the cell wall structure of the tested bacteria. Comparing the inhibitory activities of the tested complexes, it was found that the 1-substituted- -2-aminobenzimidazole derivatives were more active than complexes of 1-substituted- 2-amino-5,6-dimethylbenzimidazoles. The effect of chemical structure on the antibacterial activity is discussed.


2016 ◽  
Vol 5 (4) ◽  
pp. 141-144
Author(s):  
Vinod Kumar ◽  
◽  
C. S. Mathela ◽  
Amit Panwar ◽  
◽  
...  

Essential oils from Calamintha umbrosa and Nepeta species viz. N. leucophylla; N. hindostana; N. ciliaris and N. clarkei (family Lamiaceae), was tested against six bacterial strains. To evaluate the correlation between the antimicrobial activity and the essential oils, PCA and HCA analysis was done. PCA and HCA analysis of the antibacterial activity revealed that essential oils of Nepeta species had a strong and broad spectrum antibacterial effect against bacterial strains of P. aeruginosa and S. scandidus. The N. leucophylla oil showed higher activity against Gram-negative bacteria P. aeruginosa (10.5 mm, MIC 10 µL/mL) and K. pneumonia (9.1 mm, MIC 45 µL/mL) among all Nepeta oils which may be due to presence of active antimicrobial iridoids compounds.


Sign in / Sign up

Export Citation Format

Share Document