scholarly journals Climate Change Effect on Irrigation Water Requirement of Wheat and Maize in Northern Part of Bangladesh

2021 ◽  
Vol 5 (1) ◽  
pp. 25-34
Author(s):  
Md Panjarul Haque ◽  
Md Zakir Hossain ◽  
Muhammad Ahsan Ali

Bangladesh is one of the most vulnerable countries for climate change in agricultural water management. A research had been done to assess climate change effects on irrigation water use of wheat and maize in the northern part of Bangladesh. The twenty nine years of data (1990-2018) were analyzed with Mann-Kendall test as well as Sen’s slope for climate change impact and the responsible weather parameters due to climate change were identified with correlation coefficients. The crop water requirement of wheat in Bogura and Rangpur was declining at the rate of 3.3mm and 2.3mm per decade respectively. Net irrigation water requirement of wheat at both Bogura and Rangpur was inclining at the rate of 1mm and 10mm per decade respectively because the effective rainfall of these regions was decreasing at 5mm and 11mm per decade respectively. The crop water requirement of maize for similar districts was increasing at the rate of 3.2mm and 2.5mm per decade respectively although net irrigation water requirement had statistically non-significance for climate change effect. The weather parameter, which was mainly responsible for climatic change in irrigation water requirement, was increasing temperature. Therefore, wheat cultivation might be coped with climate change in the northern part of Bangladesh rather than maize on the basis of irrigation and water management.

2013 ◽  
Vol 340 ◽  
pp. 961-965
Author(s):  
Xin Hua Wang ◽  
Mei Hua Guo ◽  
Hui Mei Liu

According to Kunming 1980-2010 monthly weather data and CROPWAT software and the corresponding crop data, crop water requirements and irrigation water use are calculated. By frequency analysis, irrigation water requirement was get for different guaranteed rate. The results show that: corn, potatoes, tobacco, and soybeans average crop water requirements were 390.7mm, 447.9mm, 361.8mm and 328.4mm, crop water dispersion coefficient is small, period effective rainfall during crop growth in most of the year can meet the crop water requirements, so irrigation water demand is small. While the multi-year average crop water requirements were 400.8mm, 353.5mm, 394.3mm for small spring crops of wheat, beans, rape. Because the effective rainfall for these crops during growth period is relative less, crop irrigation water requirements for small spring crop is much. Vegetables and flowers are plant around the year, so the crop water and irrigation water requirements are the largest.


Author(s):  
Javad Gilanipour ◽  
Bahram Gholizadeh

In this paper, Rice water requirement and irrigation water requirement in Amol agro meteorological Station in 2016-2045 are forecasted based on the projected meteorological data of Hadcm3 under A2 scenario. Rice water requirements are estimated by using crop coefficient approach. Reference evapotranspiration are calculated by FAO Penman-Monteith method. Moreover, the irrigation water requirements are simulated by calibrated CROPWAT model using the meteorological parameters. The results show that both crop water requirement and irrigation water requirement present downward trend in the future. In 2016-2045, the rice water requirement and irrigation water requirement decrease by more than 9.9% under A2 scenario, respectively. Furthermore, the precipitation rise may be the main reason for the decrease in crop water requirement, while significant decrease of irrigation water requirement should be attributed to combined action of rising precipitation and a slight increase in temperature.


2021 ◽  
Author(s):  
Shubham Anil Gade ◽  
Devidas D Khedkar

Abstract The hydrological cycle has been massively impacted by climate change and human activities. Thus it is of the highest concern to examine the effect of climate change on water management, especially at the regional level, to understand possible future shifts in water supply and water-related crises, and to provide support for regional water management. Fortunately, there arises a high degree of ambiguity in determining the effect of climate change on water requirements. In this paper, the Statistical DownScaling (SDSM) model is applied to simulate the potential impact of climate on crop water requirement (CWR) by downscaling ET0 in the region of Western Maharashtra, India for the future periods viz., 2030s, 2050s, and 2080s across three meteorological stations (Pune, Rahuri, and Solapur). Four crops i.e. cotton, soybean, onion, and sugarcane are selected during the analysis. The Penman-Monteith equation is used to calculate reference crop evapotranspiration (ET0), which further in conjunction with the crop coefficient (Kc) equation is used to calculate crop evapotranspiration (ETc) / CWR. The predictor variables are extracted from the NCEP reanalysis dataset for the period 1961-2000 and the HadCM3 under H3A2 and H3B2 scenarios for the period of 1961 – 2099. The results indicated by SDSM profound good applicability in downscaling due to satisfactory performance during calibration and validation for all three stations. The projected ET0 indicated an increase in mean annual ET0 as compared to the present condition during the 2030s, 2050s, and 2080s. The ET0 would increase for all months (in summer, winter, and pre-monsoon seasons) and decrease from June to September (monsoon season). The estimated future CWR show variation in the range for cotton (-0.97 to 2.48%), soybean (-2.09 to 1.63 %), onion (0.49 to 4.62 %), and sugarcane (0.05 to 2.86 %).


1984 ◽  
Vol 11 (1) ◽  
pp. 4-6 ◽  
Author(s):  
D. K. Pahalwan ◽  
R. S. Tripathi

Abstract Field experiment was conducted during dry season of 1981 and 1982 to determine the optimal irrigation schedule for summer peanuts (Arachis hypogaea L.) in relation to evaporative demand and crop water requirement at different growth stages. It was observed that peanut crop requires a higher irrigation frequency schedule during pegging to pod formation stage followed by pod development to maturity and planting to flowering stages. The higher pod yield and water use efficiency was obtained when irrigations were scheduled at an irrigation water to the cumulative pan evaporation ratio of 0.5 during planting to flowering, 0.9 during pegging to pod formation and 0.7 during pod development to maturity stage. The profile water contribution to total crop water use was higher under less frequent irrigation schedules particularly when the irrigations were scheduled at 0.5 irrigation water to the cumulative pan evaporation ratio up to the pod formation stage.


2019 ◽  
Author(s):  
MAYA AMALIA ACHYADI ◽  
KOICHIRO OHGUSHI ◽  
TOSHIHIRO MORITA ◽  
SU WAI THIN ◽  
WATARU KAWAHARA

Sign in / Sign up

Export Citation Format

Share Document