scholarly journals A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies

2017 ◽  
Vol 29 (3) ◽  
Author(s):  
Wilson Sakpere ◽  
Michael Adeyeye Oshin ◽  
Nhlanhla BW Mlitwa

The research and use of positioning and navigation technologies outdoors has seen a steady and exponential growth. Based on this success, there have been attempts to implement these technologies indoors, leading to numerous studies. Most of the algorithms, techniques and technologies used have been implemented outdoors. However, how they fare indoors is different altogether. Thus, several technologies have been proposed and implemented to improve positioning and navigation indoors. Among them are Infrared (IR), Ultrasound, Audible Sound, Magnetic, Optical and Vision, Radio Frequency (RF), Visible Light, Pedestrian Dead Reckoning (PDR)/Inertial Navigation System (INS) and Hybrid. The RF technologies include Bluetooth, Ultra-wideband (UWB), Wireless Sensor Network (WSN), Wireless Local Area Network (WLAN), Radio-Frequency Identification (RFID) and Near Field Communication (NFC). In addition, positioning techniques applied in indoor positioning systems include the signal properties and positioning algorithms. The prevalent signal properties are Angle of Arrival (AOA), Time of Arrival (TOA), Time Difference of Arrival (TDOA) and Received Signal Strength Indication (RSSI), while the positioning algorithms are Triangulation, Trilateration, Proximity and Scene Analysis/ Fingerprinting. This paper presents a state-of-the-art survey of indoor positioning and navigation systems and technologies, and their use in various scenarios. It analyses distinct positioning technology metrics such as accuracy, complexity, cost, privacy, scalability and usability. This paper has profound implications for future studies of positioning and navigation.

2017 ◽  
Vol 9 (7) ◽  
pp. 1433-1439 ◽  
Author(s):  
Seyyed Jamal Borhani ◽  
Mohammad Amin Honarvar ◽  
Bal S. Virdee

The design of a novel microstrip ultra-wideband (UWB) bandpass filter with quad narrow notched-band functionality is presented. The filter consists of a multi-mode resonator (MMR) constituted from two modified stepped-impedance stubs that generate six resonate modes, five of which are within the UWB passband where the sixth mode is used to extend the upper stopband of the filter. Two transmission zeroes are located at the 3-dB edge of the passband to enhance the filter's selectivity with a skirt factor of 0.955. The MMR is fed through asymmetric interdigital coupled-lines feed to produce controllable notched-band. Additional notched-bands are generated with a parasitic coupled line. The notched-bands are centered exactly to eliminate interference at 5.2 GHz (wireless local area network (WLAN)), 5.8 GHz (WLAN), 6.8 GHz (radio-frequency identification), and 8 GHz (X-band). Good agreement is obtained between simulation and measurement results. The highly compact filter has dimensions of 8.0 × 9.83 mm2.


2010 ◽  
Vol 56 (2) ◽  
pp. 137-144
Author(s):  
Johnson Agbinya ◽  
Vivian Lee ◽  
Khalid Aboura ◽  
Zenon Chaczko

Mapping and Recognition of Radio Frequency Clutter in Various Environments in AustraliaRadio frequency spectrum mapping allows determining the radio frequency signatures prevalent within an environment. We address the primary frequency bands used for cellular, wireless Local Area Network (LAN), Universal Mobile Telecommunications System (UMTS) and Ultra-wideband (UWB) communications. The purpose of the experiment presented in this paper is to map the detected radio frequencies within an environment and display the collated data on a graphical user interface. A program identifies the presence of the aforementioned radio frequency signatures and recognizes signal levels which exceed the exposure standards enforced by the Australian Communication and Media Authority. The results assist in the understanding of the ramifications of long-term exposure to radio frequency radiation associated with the continued proliferation of wireless devices.


2020 ◽  
Vol 37 (6) ◽  
pp. 1821-1825
Author(s):  
Amir Ehsan Kianfar ◽  
Fabian Uth ◽  
Ralph Baltes ◽  
Elisabeth Clausen

AbstractAs indoor positioning provides particular challenges due to the unavailability of GPS signals, various systems such as ultra-wideband (UWB), radio frequency identification (RFID), ultrasound, and wireless local area network (WLAN) have been proposed in recent years. Some of these technologies are currently being marketed and some are still being developed. UWB technology allows for higher precision while also reducing power consumption. Hence, the underground automation and localization systems can use this technology for more accuracy and robustness. This article discusses new robust UWB modules used for underground positioning and collision avoidance with regard to human safety in underground mining operations.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012004
Author(s):  
Noraini Azmi ◽  
Latifah Munirah Kamarudin ◽  
Latifah Mohamed ◽  
Ammar Zakaria ◽  
Mohd Hafiz Fazalul Rahiman ◽  
...  

Abstract Radio Frequency Identification (RFID) enables a large number of object monitoring since semi/passive tags are independent of batteries. In our previous work, the possibility of using different wireless technologies such as Wireless Sensor Network (WSN), Wireless Local Area Network (WLAN) and Radio Frequency Identification (RFID) to determine the moisture content in rice was investigated. Finding from our previous work suggest that RFID can be used to determine the moisture content of rice. While numerous research have been conducted for moisture content of grain, however, to author’s knowledge, there is only a few studies conducted on the localization of grain hostpot. Therefore, this study aims to investigate if the passive RFID array can be used to localize the location of the wet spot of grain. Prior, the experiment, a suitable setting for the RFID system were determined. In addition, a simple test was conducted to select a suitable operating frequency. From the investigation, the result indicates that only frequency channels 865, 866, 867, 868 and 869 MHz can detect all 30 tags. Meanwhile, frequency channel in the range 902 to 928 MHz detects 26 to 29 unique tags. Hence, 868 MHz was selected as the operating frequency throughout the experiment. The findings indicate that the RSSI value measured by the RFID reader decreased as the moisture of the sample increased when the tags were blocked by the sample placed at the designated location during the test.


2021 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Bráulio Henrique O. U. V. Pinto ◽  
Horácio A. B. F. de Oliveira ◽  
Eduardo J. P. Souto

Indoor Positioning Systems (IPSs) are designed to provide solutions for location-based services. Wireless local area network (WLAN)-based positioning systems are the most widespread around the globe and are commonly found to have a ready-to-use infrastructure composed mostly of access points (APs). They advertise useful information, such as the received signal strength (RSS), that is processed by adequate location algorithms, which are not always capable of achieving the desired localization error only by themselves. In this sense, this paper proposes a new method to improve the accuracy of IPSs by optimizing the arrangement of APs over the environment using an enhanced probability-based algorithm. From the assumption that a log-distance path loss model can reasonably describe, on average, the distribution of RSS throughout the environment, we build a simulation framework to analyze the impact, on the accuracy, of the main factors that constitute the positioning algorithm, such as the number of reference points (RPs) and the number of samples of RSS collected per test point. To demonstrate the applicability of the proposed solution, a real-world testbed dataset is used for validation. The obtained results for accuracy show that the trends verified via simulation strongly correlate to the verified in the dataset processing when allied with an optimal configuration of APs. This indicates our method is capable of providing an optimal factor combination—through early simulations—for the design of more efficient IPSs that rely on a probability-based positioning algorithm.


2011 ◽  
Vol 204-210 ◽  
pp. 1599-1602 ◽  
Author(s):  
Zhi An Deng ◽  
Yu Bin Xu ◽  
Di Wu

Indoor positioning system in wireless local area network (WLAN) has been a subject of intensive research due to its cost effectiveness and reasonable positioning accuracy. A new WLAN indoor positioning algorithm based on support vector regression (SVR) and space partitioning is proposed. The whole positioning environment is partitioned into several subspaces by combining k-means clustering method and binary support vector classifiers (SVC). Then the mapping function between received signal strength (RSS) and the physical space is established by SVR machine for each subspace. Subspace with much smaller physical range means more compact input feature space and leads to the enhancement of generalization capability for each SVR machine. The proposed algorithm and other well-known positioning algorithms are carried and compared in a real WLAN environment. Experimental results show that the proposed algorithm achieves 14.6 percent (0.31m) improvement than the single SVR algorithm in the sense of mean positioning error.


Author(s):  
Patrik Skogster ◽  
Varpu Uotila

Knowing consumers’ shopping paths is an essential part of successful retailing. Good space management requires accurate data about consumer behavior. Traditionally, these data have been collected through, for example, panel interviews, camera tracking, and in-store observation. Their nature is more or less subjective. Modern technology makes it possible to use more objective methods, such as wireless local area network (WLAN) and radio frequency identification (RFID). In this article we examine the possibilities WLAN provides information systems studies. The empirical data is collected from a large DIY (do-it-yourself) store. The results show that WLAN has great potential for accurate and objective data collection processes and modeling data in retailing.


Sign in / Sign up

Export Citation Format

Share Document