scholarly journals Development of a Robust Ultra-Wideband Module for Underground Positioning and Collision Avoidance

2020 ◽  
Vol 37 (6) ◽  
pp. 1821-1825
Author(s):  
Amir Ehsan Kianfar ◽  
Fabian Uth ◽  
Ralph Baltes ◽  
Elisabeth Clausen

AbstractAs indoor positioning provides particular challenges due to the unavailability of GPS signals, various systems such as ultra-wideband (UWB), radio frequency identification (RFID), ultrasound, and wireless local area network (WLAN) have been proposed in recent years. Some of these technologies are currently being marketed and some are still being developed. UWB technology allows for higher precision while also reducing power consumption. Hence, the underground automation and localization systems can use this technology for more accuracy and robustness. This article discusses new robust UWB modules used for underground positioning and collision avoidance with regard to human safety in underground mining operations.

2017 ◽  
Vol 9 (7) ◽  
pp. 1433-1439 ◽  
Author(s):  
Seyyed Jamal Borhani ◽  
Mohammad Amin Honarvar ◽  
Bal S. Virdee

The design of a novel microstrip ultra-wideband (UWB) bandpass filter with quad narrow notched-band functionality is presented. The filter consists of a multi-mode resonator (MMR) constituted from two modified stepped-impedance stubs that generate six resonate modes, five of which are within the UWB passband where the sixth mode is used to extend the upper stopband of the filter. Two transmission zeroes are located at the 3-dB edge of the passband to enhance the filter's selectivity with a skirt factor of 0.955. The MMR is fed through asymmetric interdigital coupled-lines feed to produce controllable notched-band. Additional notched-bands are generated with a parasitic coupled line. The notched-bands are centered exactly to eliminate interference at 5.2 GHz (wireless local area network (WLAN)), 5.8 GHz (WLAN), 6.8 GHz (radio-frequency identification), and 8 GHz (X-band). Good agreement is obtained between simulation and measurement results. The highly compact filter has dimensions of 8.0 × 9.83 mm2.


Joint Rail ◽  
2004 ◽  
Author(s):  
Paul A. Flaherty

Ultra Wide Band (UWB) radio is a unique technology which combines a megabit wireless local area network with a centimeter-resolution radiolocation (RADAR) capability over distances less than 100 meters. A linear chain of UWB nodes can be used to create a hop-by-hop data transmission network, which also forms a RADAR “corridor” along the chain. By co-locating such a chain of nodes along a railroad right-of-way, precise information on the location and velocity of trains could be distributed throughout the corridor. In addition, the radar corridor would detect the introduction of track obstacles such as rocks, people, and automobiles, as well as shifted loads and other high-wide train defects. Finally, the network of nodes would enable off-train communications with payload sensors, locomotive computers, and could also provide wireless connectivity for passenger service.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1007
Author(s):  
Zhuohang Zhang ◽  
Zhongming Pan

A novel reconfigurable filter antenna with three ports for three dependent switchable states for impulse radio-ultrawideband (IR-UWB)/wireless local area network (WLAN)/worldwide interoperability for microwave access (WiMAX) applications is presented in this paper. Three positive-intrinsic-negative diodes, controlled by direct current, are employed to realize frequency reconfiguration of one ultra-wideband state and two narrowband states (2.4 GHz and 3.5 GHz). The time domain characteristic of the proposed antenna in the ultra-wideband state is studied, because of the features of the IR-UWB system. The time domain analysis shows that the reconfigurable filtering antenna in the wideband state performs similarly to the original UWB antenna. The compact size, low cost, and expanded reconfigurable filtering features make it suitable for IR-UWB systems that are integrated with WLAN/WiMAX communications.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2015 ◽  
Vol 8 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Raghupatruni Venkatsiva Ram Krishna ◽  
Raj Kumar ◽  
Nagendra Kushwaha

In this paper, a microstrip fed, L-shape slot antenna for dual polarization is proposed. The two arms of the slot generate electric fields of orthogonal polarizations. By properly sectioning the slot and the feed line, ultra wideband (UWB) behavior is obtained. The measured impedance bandwidth (S11< −10 dB) is more than 8.6 GHz (112%) and 8.2 GHz (104%) for Port 1 and Port 2, respectively. The measured isolation is better than 25 dB over most of the band. The aperture field distribution justifies the dual polarized nature. A modified version which implements a band-notch over 5.1–5.85 GHz wireless local area network (WLAN) band is also presented. With a compact, single substrate design, the antenna can be useful in MIMO transmission systems, polarimetric UWB radar, high performance microwave imaging, and other future wireless communications devices.


2010 ◽  
Vol 56 (2) ◽  
pp. 137-144
Author(s):  
Johnson Agbinya ◽  
Vivian Lee ◽  
Khalid Aboura ◽  
Zenon Chaczko

Mapping and Recognition of Radio Frequency Clutter in Various Environments in AustraliaRadio frequency spectrum mapping allows determining the radio frequency signatures prevalent within an environment. We address the primary frequency bands used for cellular, wireless Local Area Network (LAN), Universal Mobile Telecommunications System (UMTS) and Ultra-wideband (UWB) communications. The purpose of the experiment presented in this paper is to map the detected radio frequencies within an environment and display the collated data on a graphical user interface. A program identifies the presence of the aforementioned radio frequency signatures and recognizes signal levels which exceed the exposure standards enforced by the Australian Communication and Media Authority. The results assist in the understanding of the ramifications of long-term exposure to radio frequency radiation associated with the continued proliferation of wireless devices.


Author(s):  
Jagannath Malik ◽  
Parth C. Kalaria ◽  
Machavaram V. Kartikeyan

In the present study, an ultra-wideband (UWB) antenna has been proposed using coplanar waveguide (CPW) feed with dual-band-notch characteristics. Slot-loaded radiator and U-shaped CPW resonator are used for band rejection at 3.5 and 5–6 GHz respectively to reduce interference with existing World interoperability for microwave access and wireless local area network systems. With an extended operating band (measured at 10 dB return loss) the antenna operates successfully over the entire UWB range (3.1–10.6 GHz) with a form factor of 30 × 20 × 1.524 mm3 on a commercially low-cost FR-4 substrate. Experimental measurement results are presented in support of the simulated results for the proposed antenna for practical application. The antenna has been successfully fabricated and measured, showing broadband matched impedance and good omnidirectional radiation pattern throughout the operating bandwidth. Measured time-domain analysis for both the orientations, i.e. face-to-face and side-by-side, yields excellent performance in the open environment scenario. With fairly good and consistent monopole such as omnidirectional radiation patterns in H-plane and linear transmission responses, the proposed antenna is well suited to be integrated within portable devices.


Author(s):  
Ketavath Kumar Naik

The kapton polyimide material is considered to design conformal antenna with spiral square for radio frequency identification (RFID) and wireless local area network (WLAN) applications. In this chapter, the analysis and investigation has been carried out with spiral square techniques using coplanar waveguide (CPW) feed. The proposed antenna operates at 5.8 GHz with impedance bandwidth of 170 MHz (5.73 - 5.9 GHz) with return loss -25.6 dB and gain is 2.4 dBi. The proposed antenna has considered with different bending angles for investigating the conformal characteristics due to flexibility of the material. These results are presented for omni-directional radiation patterns.


Sign in / Sign up

Export Citation Format

Share Document