Efficient Detection of Extra Virgin Olive Oil Adulteration via UV and FTIR Spectra in combination with Heat-Mediated Oxidation Method

Author(s):  
Sepideh Gholami Khesht ◽  
E Kavusi ◽  
M Mousavi

The main aim of this study is simple and fast authentication of extra virgin olive oil by different spectroscopic techniques individually and also in combination with minimal chemical waste. UV spectra of the EVOO and mixed olive oil samples were recorded before the heating test and then along the thermal degradation experiments at the 45- and 90-mins intervals set for the analysis.  The EVOO and mixed oils samples showed high absorption values around 240-300 nm band. The results showed that the characteristics of FTIR spectra including peak number, peak position and peak shape in mixed samples were significantly different from EVOO samples. According to the studies, the frequencies of around 2920 cm−1 and 2856 cm−1 could be related with C–H stretching (e.g. cis-double bonds) and with –C–H asymmetrical and symmetrical stretching in methylene groups. The frequency at 2925 cm−1 is associated with aliphatic CH2 groups. Around 1366 cm−1 and 1451 cm−1, these frequencies could be associated with the bending vibrations of C–H groups. The results reveal that the UV–VIS and FT-IR analytical tools are the most suitable and reliable tools to detect and quantify high levels (over 10%) of adulteration in mixes of EVO with other vegetable oils.

2014 ◽  
Vol 69 (1) ◽  
Author(s):  
Abdul Rohman ◽  
Intan Gupitasari ◽  
Purwanto Purwanto ◽  
Kuwat Triyana ◽  
Arieff Salleh Rosman ◽  
...  

The presence of lard (LD) in cosmetics products is a serious matter for certain religion, like Islam. The Muslim community is not allowed to use cosmetics products containing pig derivatives such as LD. Therefore, analysis of LD in cosmetics products is highly needed. The present study highlighted the employment of Fourier transform infrared (FTIR) spectroscopy in combination with chemometrics of multivariate calibration and principle component analysis (PCA) for quantitative analysis and classification of LD in the binary mixture with extra virgin olive oil (EVOO) as oil base in cream formulations for halal authentication. The lipid component in cream was extracted using liquid-liquid extraction using hexane as extracting solvent, and the lipid obtained was subjected to FTIR spectra measurement, using horizontal attenuated total reflectance as sampling technique. The result showed that FTIR spectroscopy in combination with partial least squares can be used to quantify the levels of LD in the mixture with EVOO in cosmetics creams using the combined frequency regions of 1785-702 cm-1 and 3020-2808 cm-1. PCA using absorbance intensities at 1200 – 1000 cm-1 as variables has been successfully used for the classification of cream with and without LD in the formulation. The developed method is rapid and not involving the excessive sample preparation.


2020 ◽  
pp. 000370282097470
Author(s):  
Joshua M. Ottaway ◽  
J. Chance Carter ◽  
Kristl L Adams ◽  
Joseph Camancho ◽  
Barry Lavine ◽  
...  

The peroxide value (PV) of edible oils is a measure of the degree of oxidation, which directly relates to the freshness of the oil sample. Several studies previously reported in the literature have paired various spectroscopic techniques with multivariate analyses to rapidly determine PVs using field portable and process instrumentation; those efforts presented ‘best-case’ scenarios with oils from narrowly defined training and test sets. The purpose of this paper is to evaluate the use of near- and mid-infrared absorption and Raman scattering spectroscopies on oil samples from different oil classes, including seasonal and vendor variations, to determine which measurement technique, or combination thereof, is best for predicting PVs. Following PV assays of each oil class using an established titration-based method, global and global-subset calibration models were constructed from spectroscopic data collected on the 19 oil classes used in this study. Spectra from each optical technique were used to create partial least squares regression (PLSR) calibration models to predict the PV of unknown oil samples. A global PV model based on near-infrared (8 mm optical path length – OPL) oil measurements produced the lowest RMSEP (4.9), followed by 24 mm OPL near infrared (5.1), Raman (6.9) and 50 μm OPL mid-infrared (7.3). However, it was determined that the Raman RMSEP resulted from chance correlations. Global PV models based on low-level fusion of the NIR (8 and 24 mm OPL) data and all infrared data produced the same RMSEP of 5.1. Global subset models, based on any of the spectroscopies and olive oil training sets from any class (pure, extra light, extra virgin), all failed to extrapolate to the non-olive oils. However, the near-infrared global subset model built on extra virgin olive oil could extrapolate to test samples from other olive oil classes.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1245
Author(s):  
Giulia Vicario ◽  
Alessandra Francini ◽  
Mario Cifelli ◽  
Valentina Domenici ◽  
Luca Sebastiani

Several spectroscopic techniques have been optimized to check extra-virgin olive oil quality and authenticity, as well as to detect eventual adulterations. These methods are usually complementary and can give information about different olive oil chemical components with bioactive and antioxidant properties. In the present work, a well-characterized set of extra-virgin olive oil (cultivar Frantoio) samples from a specific area of Tuscany (Italy) were investigated by combining near UV-Vis absorption spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) to identify and quantify different chemical components, such as pigments, secoiridoids and squalene, related to the nutritional and quality properties of olive oils. Moreover, the pigmentation index of olives, organoleptic and sensory properties, total phenolic compound contents and the lipidic fractions of olive oils were investigated. The results obtained are, finally, compared and discussed in order to correlate several properties of both olives and olive oils with specific features of the cultivation area.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 41 ◽  
Author(s):  
Paola Baltazar ◽  
Natalia Hernández-Sánchez ◽  
Belén Diezma ◽  
Lourdes Lleó

The main objective of this study was to evaluate the feasibility of developing multivariate models to estimate physico-chemical characteristics and antioxidant content of extra virgin olive oil from fluorescence spectra obtained at specific excitation wavelengths. Six replicates of each extra virgin olive oil sample were contained in clear glass bottles. Two replicates were subjected to four weeks of natural indirect light; two bottles for two days; and the third couple were kept it in darkness as a control. For each pair, one bottle was used for spectroscopic measurements and the other was sent to an accredited external laboratory to obtain physico-chemical measurements: acidity, peroxide index, K270, K232, total tocopherols, α-tocopherol, β-tocopherol and γ-tocopherol. Fluorescence emission spectra were acquired at different excitation wavelengths: 326 nm, 350 nm and 365 nm and partial least squares regression (PLSR) models were developed. The highest R2 values were found for excitation at 350 nm, reaching almost 0.9 in most of the parameters.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Abdul Rohman ◽  
Y. B. Che Man

Commercially, extra virgin olive oil (EVOO) is subjected to be adulterated with low-price oils having similar color to EVOO. Fourier transform infrared (FTIR) spectroscopy combined with chemometrics has been successfully used for classification and quantification of corn (CO) and sunflower oils (SFOs) in EVOO sets. The combined frequency regions of 3027–3000, 1076–860, and 790–698 cm-1were used for classification and quantification of CO in EVOO; meanwhile, SFO was analyzed using frequency regions of 3025–3000 and 1400–985 cm-1. Discriminant analysis can make classification of pure EVOO and EVOO adulterated with CO and SFO with no misclassification reported. The presence of CO in EVOO was determined with the aid of partial least square calibration using FTIR normal spectra. The calibration and validation errors obtained in CO's quantification are 0.404 and 1.13%, respectively. Meanwhile, the first derivative FTIR spectra and PLS calibration model were preferred for quantification of SFO in EVOO with high coefficient of determination (R2) and low errors, either in calibration or in validation sample sets.


2000 ◽  
Vol 46 (7) ◽  
pp. 976-988 ◽  
Author(s):  
Robert W Owen ◽  
Walter Mier ◽  
Attilio Giacosa ◽  
William E Hull ◽  
Bertold Spiegelhalder ◽  
...  

Abstract Background: Because olive oil is an important component of the Mediterranean diet, it is necessary to establish unequivocal identification of the major potential antioxidant phenolic compounds it contains. Methods: The major phenolic antioxidants in extra virgin olive oil were isolated and purified. Structural analysis was conducted using several spectroscopic techniques, including mass spectrometry and nuclear magnetic resonance (NMR). In particular, detailed 1H and 13C NMR data are presented, and several assignment errors in the literature are corrected. Results: The data show for the first time that the lignans (+)-1-acetoxypinoresinol and (+)-pinoresinol are major components of the phenolic fraction of olive oils. These lignans, which are potent antioxidants, are absent in seed oils and virtually absent in refined virgin oils but are present at concentrations of up to 100 mg/kg (mean ± SE, 41.53 ± 3.93 mg/kg; range, 0.65–99.97 mg/kg) in extra virgin oils. As with the simple phenols and secoiridoids, there is considerable interoil variation in lignan concentrations. Foods containing high amounts of lignan precursors have been found to be protective against breast, colon, and prostate cancer. Conclusion: Lignans, as natural components of the diet, may be important modulators of cancer chemopreventive activity.


2021 ◽  
pp. 000370282199450
Author(s):  
Joshua M. Ottaway ◽  
J. Chance Carter ◽  
Kristl L Adams ◽  
Joseph Camancho ◽  
Barry Lavine ◽  
...  

The peroxide value (PV) of edible oils is a measure of the degree of oxidation, which directly relates to the freshness of the oil sample. Several studies previously reported in the literature have paired various spectroscopic techniques with multivariate analyses to rapidly determine PVs using field portable and process instrumentation; those efforts presented ‘best-case’ scenarios with oils from narrowly defined training and test sets. The purpose of this paper is to evaluate the use of near- and mid-infrared absorption and Raman scattering spectroscopies on oil samples from different oil classes, including seasonal and vendor variations, to determine which measurement technique, or combination thereof, is best for predicting PVs. Following PV assays of each oil class using an established titration-based method, global and global-subset calibration models were constructed from spectroscopic data collected on the 19 oil classes used in this study. Spectra from each optical technique were used to create partial least squares regression (PLSR) calibration models to predict the PV of unknown oil samples. A global PV model based on near-infrared (8 mm optical path length – OPL) oil measurements produced the lowest RMSEP (4.9), followed by 24 mm OPL near infrared (5.1), Raman (6.9) and 50 μm OPL mid-infrared (7.3). However, it was determined that the Raman RMSEP resulted from chance correlations. Global PV models based on low-level fusion of the NIR (8 and 24 mm OPL) data and all infrared data produced the same RMSEP of 5.1. Global subset models, based on any of the spectroscopies and olive oil training sets from any class (pure, extra light, extra virgin), all failed to extrapolate to the non-olive oils. However, the near-infrared global subset model built on extra virgin olive oil could extrapolate to test samples from other olive oil classes.


Sign in / Sign up

Export Citation Format

Share Document