scholarly journals Strength Properties of Bio-composite Lumbers from Lignocelluloses of Oil Palm Fronds Agricultural Residues

Author(s):  
Mohd Sukhairi Mat Rasat ◽  
Razak Wahab ◽  
Zulhisyam Abdul Kari ◽  
Ag Ahmad Mohd Yunus ◽  
Janshah Moktar ◽  
...  
2021 ◽  
Author(s):  
Razak Wahab ◽  
Mohd Sukhairi Mat Rasat ◽  
Norashikin Mohd Fauzi ◽  
Mohamad Saiful Sulaiman ◽  
Hashim W. Samsi ◽  
...  

Oil palm fronds are one of the biomass residues originating from oil palm plantations. It has great potential to be used as an alternative material for the composite boards industry to reduce dependency on wood-based raw materials. The fronds are obtainable all the year round and in big quantity. The oil palm fronds had been processed as compressed oil palm fronds to form such a potential composite board in this topic. A composite board from compressed oil palm fronds was produced by removing the fronds’ leaflets and epidermis. The sample was sliced longitudinally into thin layers and compressed into an identical thickness at about 2 to 3 mm. Pieces of the sample were dry using the air-dried method. They were then mixed with phenol and urea-formaldehyde of resins in the range of 12-15% and compressed again with another layer forming a composite board. Standard outlined by the International Organization for Standardization (ISO) tested for their physical and strength properties of composite board. Found that the physical and strength aspects’ properties show that the composite board possessed characteristics at par or equivalent. The composite board from compressed oil palm fronds has good prospects to be used as an alternative to wood. Thus, this characteristics can overcome the shortage in materials supply in the wood-based industry.


2021 ◽  
Vol 60 (5) ◽  
pp. 2011-2026
Author(s):  
Eng Kein New ◽  
Ta Yeong Wu ◽  
Khai Shing Voon ◽  
Alessandra Procentese ◽  
Katrina Pui Yee Shak ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. 30-35
Author(s):  
Seri Maulina ◽  
Gewa Handika

This paper aims to understand the difference in characteristics of activated carbon produced from oil palm fronds (Elaeis guineensis Jacq) through the addition of two different activators, namely sodium carbonate (Na2CO3) and sodium chloride (NaCl). To do this, activator concentration of 10 percent each with activation temperature of 600 oC were applied in the experiment. Moreover, to determine the quality of activated carbon produced, a morphological analysis of activated carbon surfaces as well as FTIR spectra analysis on activated carbon. Identification using FTIR spectrophotometer revealed that the activated carbon in this study contained functional groups of O-H, C = O, C = C, C-C, and C-H.


Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 415-429 ◽  
Author(s):  
S. Misha ◽  
S. Mat ◽  
M.H. Ruslan ◽  
E. Salleh ◽  
K. Sopian
Keyword(s):  
Oil Palm ◽  

2018 ◽  
Vol 122 ◽  
pp. 617-626 ◽  
Author(s):  
Masniroszaime Md Zain ◽  
Abdul Wahab Mohammad ◽  
Shuhaida Harun ◽  
Nurul Aina Fauzi ◽  
Nur Hanis Hayati Hairom

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 218
Author(s):  
Pin Chanjula ◽  
Chanon Suntara ◽  
Anusorn Cherdthong

This study aimed to examine the combined effects of urea and calcium hydroxide ensiled oil palm fronds on rumen fermentation and digestibility of Thai native-Anglo Nubian goats. A 4 × 4 Latin square design was used to randomly assign four male crossbred goats (Thai native × Anglo Nubian). The dietary treatments were as follows: ensiled oil palm frond with no additives (EOPF as the control), urea 5% (50 g/kg fresh matter) (E-UOPF 5%), calcium hydroxide (Ca(OH)2) 5% (50 g/kg fresh matter) (E-CaOPF 5%), and combination of urea 2.5% (25 g/kg fresh matter) with Ca(OH)2 (25 g/kg fresh matter) (E-UCOPF 2.5%). The oil palm frond ensiled with different additives did not change the DM intake (p > 0.05). The total TMR intakes range from 69.39 to 77.09 g/kg BW0.75. The goats fed with E-UOPF 5.0% consumed significantly more CP than the other groups (p < 0.05). The E-UCOPF increased ME intake by 4.8%, compared with the control treatment (p < 0.05). E-UOPF 5% and E-UCOPF 2.5% significantly increased the CP digestibility by 19.7% and 17.1%, respectively (p < 0.05). Furthermore, E-CaOPF 5.0% and E-UCOPF 2.5% improved the NDF digestibility by about 10.9% and 9.90%, respectively (p < 0.05). The urea-containing oil palm frond (E-UOPF 5.0% and E-UCOPF 2.5%) had higher blood urea nitrogen (BUN) than the other groups (p < 0.05). The TVFA of goats fed E-UCOPF 2.5% was approximately 15.8% higher than that of goats provide EOPF (p < 0.05). The mean concentration of C3 increased by 7.90% and 11.61%, respectively, when E-CaOPF 5.0% and E-UCOPF 2.5% were provided instead of EOPF (p < 0.05). The total N intake and absorbed were highest (p < 0.05) when goats offered E-UOPF 5.0% (p < 0.05). The goats fed oil palm frond without additives had the lowest percentage of N-absorption/N intake (p < 0.05). This study clearly shows that the most suitable treatment is E-UCOPF 2.5%, which enhances DMD, nutrient digestibility, TVFAs, and nitrogen balance and has no negative effects on rumen microbes. This indicates that E-UCOPF 2.5% may be utilized as an alternate roughage source in TMR diets, accounting for at least 40% of the OPF. However, several factors still require consideration for urea-Ca(OH)2 treatments to be successful, including other concentrations of urea, moisture content, duration of pre-treatment, and the metabolizable protein system.


Sign in / Sign up

Export Citation Format

Share Document