scholarly journals Chennai Extreme Rainfall Event of 2015 under Future Climate Projections Using the Pseudo Global Warming Dynamic Downscaling Method

2020 ◽  
Vol 118 (12) ◽  
pp. 1968
Author(s):  
P. Jyoteeshkumar ◽  
P. V. Kiran ◽  
C. Balaji
2010 ◽  
Vol 3 (2) ◽  
pp. 1-20
Author(s):  
Helen M. Cox

Climate change is the most important contemporary environmental problem that the world faces, yet it is the subject of many misconceptions. Climate science has been used for political ends and distorted in the press, both intentionally and through ignorance. This article presents an overview of what is known about global warming and what is controversial, about future climate projections and their impacts, and about the emissions responsible for climate change and policies to limit them.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 265 ◽  
Author(s):  
Masamichi Ohba

This study investigated the impact of global warming on Japanese wind energy resources and their short-term variations using the large ensemble d4PDF dataset, which consists of dynamically downscaled historical and +4K future climate projections. The capacity factor under the future and present climate was estimated from an idealized power curve based on hourly near-surface wind speeds. The +4K warming future climate projections showed significant changes in wind energy resources that varied both regionally and seasonally. The wind energy potential was projected to slightly increase (decrease) from winter to spring over northern (southern) Japan and decrease from summer to autumn over most of Japan. The projected annual production decreased by about ~5% over Japan in response to climate change. The frequency of wind ramp events also decreased in the latter seasons. The relationship to synoptic weather was investigated using self-organizing maps, whereby weather patterns (WPs) over the region in the present and future +4K climate were classified for a two-dimensional lattice. Future probabilistic projections of WPs under the global warming scenario showed both increases and decreases in the frequency of different WPs, with corresponding advantages and disadvantages for wind power generation with regard to future changes in capacity factors in Japan. The importance of these frequency changes on the total change was further assessed by separating the dynamical and thermodynamic contributions.


2016 ◽  
Vol 96 (4) ◽  
pp. 504-514 ◽  
Author(s):  
Wenjing Chen ◽  
Xin Jia ◽  
Chunyi Li ◽  
Haiqun Yu ◽  
Jing Xie ◽  
...  

Extreme rainfall events are infrequent disturbances that affect urban environments and soil respiration (Rs). Using data measured in an urban forest ecosystem in Beijing, China, we examined the link between gross primary production (GPP) and soil respiration on a diurnal scale during an extreme rainfall event (i.e., the “21 July 2012 event”), and we examined diel and seasonal environmental controls on Rs. Over the seasonal cycle, Rs increased exponentially with soil temperature (Ts). In addition, Rs was hyperbolically related to soil volumetric water content (VWC), increasing with VWC below a threshold of 0.17 m3 m−3, and then decreasing with further increases in VWC. Following the extreme rainfall event (177 mm), Rs showed an abrupt decrease and then maintained a low value of ∼0.3 μmol m−2 s−1 for about 8 h as soil VWC reached the field capacity (0.34 m3 m−3). Rs became decoupled from Ts and increased very slowly, while GPP showed a greater increase. A bivariate Q10-hyperbolical model, which incorporates both Ts and VWC effects, better fits Rs than the Q10 model in summer but not for whole year.


2021 ◽  
Vol 134 (1) ◽  
Author(s):  
Manas Pant ◽  
Soumik Ghosh ◽  
Shruti Verma ◽  
Palash Sinha ◽  
R. K. Mall ◽  
...  

2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


Sign in / Sign up

Export Citation Format

Share Document