scholarly journals Determination of Optimum Parameters for Multi Performance in a Machining Process

Author(s):  
N K Mandal ◽  
Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.


2016 ◽  
Vol 686 ◽  
pp. 39-44 ◽  
Author(s):  
Józef Gawlik ◽  
Joanna Krajewska-Śpiewak ◽  
Wojciech Zębala

The chip-forming precision machining process plays a significant role in the mechanical technology. In planning of machining operation, it is crucial to supply the information about the possible minimal value of the machining allowance. For the technologist, when planning the machining operation, it is important to define the minimal thickness of cutting layer correctly. This article presents a new method of describing the start of decohesion process in a workpiece, meaning the determination of the minimal thickness of cutting layer based on the AE signal generated in the cutting zone. The research conducted on the turning of an alloy steel and the analysis of the AE signal strength confirmed that the proposed method opens new possibilities in quickening the identification of the minimal thickness of cutting layer under normal machining conditions.


2021 ◽  
Vol 68 (3-4) ◽  
pp. 22-28
Author(s):  
Bettina Ronai ◽  
Rainer Franz ◽  
Marcella Frauscher

Water and solid particulate contamination are the two most common contaminants of lubricated systems and may be highly problematic for these systems. To reduce downtime and prevent failure, lubricant formulations contain detergent and dispersant additives that play an important role in terms of contamination tolerance. In lack of a practical procedure for the determination of the relevant properties, a novel method for the evaluation of the dispersing ability of lubricating oils is introduced. Following and combining established lubricant analysis methods, a procedure with optimum parameters was found. An assessment of the method using fresh and artificially altered lubricating oils allowed a differentiation concerning their dispersing ability.


2019 ◽  
Vol 2 (3) ◽  
pp. 634-641
Author(s):  
Hakan Gökçe ◽  
Ramazan Yeşilay ◽  
Necati Uçak ◽  
Ali Teke ◽  
Adem Çiçek

In material removal processes, determination of optimal machining strategy is a key factor to increase productivity. This situation is gaining more importance when machining components with complex geometry. The current practice in the determination of machining strategy mostly depends on the experience of the machine operator. However, poorly designed machining processes lead to time-consuming and costly solutions. Therefore, the improvement of machining processes plays a vital role in terms of machining costs. In this study, the machining process of a boom-body connector (GGG40) of a backhoe loader was improved. Improvements of toolpaths and cutting conditions of 22 different material removal processes were checked through a CAM software. According to the simulation results, the process plan was rearranged. Besides, some enhancements in casting model were conducted to decrease in the number of machining operations. When compared to current practice, a reduction of 55% in machining time was achieved.


2020 ◽  
Vol 110 (05) ◽  
pp. 295-298
Author(s):  
Christian Brecher ◽  
Florian Kneer ◽  
Stephan Neus

Die axiale Steifigkeit von Kugelgewindetrieben ist wesentlich für das Betriebsverhalten von Werkzeugmaschinen. Während der Bearbeitung werden die Prozesskräfte über den Kugelgewindetrieb in die Maschinenstruktur übertragen. Kugelgewindetriebe tragen daher maßgeblich zur Qualität und Produktivität von Werkzeugmaschinen bei. Dieser Beitrag beschreibt eine Methode zur messtechnischen, prüfstandsgebundenen Ermittlung des Last-Verlagerungsverhaltens an Kugelgewindetrieben.   The axial elastic displacement of ball screws are essential for the operating behavior of machine tools. During machining, process forces must be transmitted to the machine structure via the ball screw. Ball screws contribute significantly to the quality and productivity of machine tools. This technical paper describes a methodology for the metrological determination of the load-displacement behavior on ball screws.


Sign in / Sign up

Export Citation Format

Share Document