Determination of Optimum Parameters for Anaerobic Thermophilic Bacterium Injection using Commercial Simulator: Core Flooding Validation and Sensitivity

Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.

2021 ◽  
Author(s):  
Adekunle Tirimisiyu Adeniyi ◽  
Chimgozirim Prince Ejim

Abstract Produced water reinjection (PWRI) is one of the methods employed by oilfield operators to optimize production while conforming to increasingly stringent produced water disposal policies. Different produced water species from different facilities also have different salinities as a result of entrainment of treatment fluids, precipitation of salts at surface conditions, etc. During re-injection operations, the salinity of the injection fluid has to be accounted for as it affects the production. Previous studies have focused on laboratory analysis by core flooding. While this approach is indeed reasonable and offers a first-hand impression of the reservoir conditions, it presents a problem of cost and the age-old opinion that the core sample may not be representative of the entire reservoir. Therefore, I have employed a computer modeling approach using a commercial simulator to analyze the influence of salinity on production during produced water re-injection. It was found that the salinity truly affects production. Re-injection of produced water with salinity equal to the reservoir salinity of 1000 ppm was compared to three cases of re-injection of produced water from extraneous sources having salinities of 100 ppm, 500 ppm and 10000 ppm. It was found that salinity of 10000 ppm gave the best oil production performance for the reservoir model; a daily rate of 40 STB/DAY and an oil cumulative production of 40,000 STB. Incremental salinity of injected produced water led to incremental oil recovery. The mechanism resulting in incremental recovery was attributed to the increase in viscosity and decrease in mobility as the salinity increases.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yong Tang ◽  
Zhengyuan Su ◽  
Jibo He ◽  
Fulin Yang

This paper presents the numerical investigation and optimization of the operating parameters of the in situ generated CO2Huff-n-Puff method with compound surfactant on the performance of enhanced oil recovery. First, we conducted experiments of in situ generated CO2and surfactant flooding. Next, we constructed a single-well radial 3D numerical model using a thermal recovery chemical flooding simulator to simulate the process of CO2Huff-n-Puff. The activation energy and reaction enthalpy were calculated based on the reaction kinetics and thermodynamic models. The interpolation parameters were determined through history matching a series of surfactant core flooding results with the simulation model. The effect of compound surfactant on the Huff-n-Puff CO2process was demonstrated via a series of sensitivity studies to quantify the effects of a number of operation parameters including the injection volume and mole concentration of the reagent, the injection rate, the well shut-in time, and the oil withdrawal rate. Based on the daily production rate during the period of Huff-n-Puff, a desirable agreement was shown between the field applications and simulated results.


2020 ◽  
Vol 1 (1) ◽  
pp. 8
Author(s):  
Boni Swadesi ◽  
Suranto Suranto ◽  
Indah Widiyaningsih ◽  
Matrida Jani

Reservoirs in the world contain various types of oil, the difference of these oil types can be seen in the viscosity value and also the value of the API degree. Reservoirs in the U-field contain heavy oil that cannot be produced conventionally so we need the EOR (Enhanced Oil Recovery) method. CSS is a method that uses high-temperature hot steam aimed at reducing the viscosity of the oil so that oil can be produced. In this final project, a simulation is conducted to study the effect of various parameters such as steam quality, injection rate, and cyclic period on CSS and also determine the best scenario for U-field. The simulation begins by determining the best steam quality value, then doing sensitivity to the expected injection rate, followed by sensitivity to the cyclic period. The best scenario results are the integration of optimum parameters, namely steam quality 0.8, the injection rate of 550 BPD, and cyclic period of 20 days injection, 4 days soaking, and 60 days of production produce RF of 35.02%.


2012 ◽  
Vol 524-527 ◽  
pp. 1209-1212 ◽  
Author(s):  
Hong Xing Xu ◽  
Chun Sheng Pu ◽  
Hong Bin Yang ◽  
Wen Hua Man ◽  
Tao Yang

Aiming at the heterogeneity characteristics of fractured reservoir, a new type of nitrogen foam flooding agents is proposed. The gas/liquid ratio of nitrogen foam flooding is selected as 3:1, and the injection rate is selected as 3mL/min by the evaluation of foam resistance factor using core flooding equipment. In addition, this foam system has a better performance in the situation of low oil saturation. The results of nitrogen foam flooding show that it can enhance oil recovery by 38% after water flooding using artificial cuboid fractured core, indicating this nitrogen foam formula is suitable for EOR in fractured reservoir.


Author(s):  
Aditya Rachman ◽  
Rini Setiati ◽  
Kartika Fajarwati Hartono

<em>The majority of petroleum production comes from the brown field where production has decreased from year to year in Indonesia. To increase the recovery factor of petroleum from the reservoir, an advanced step of production is required, Enhanced Oil Recovery (EOR), which can optimize the depletion of old oil fields. EOR is the application of technology that requires cost, technology and high risk. Therefore, before implementing EOR, in a field, we must carefully evaluate both technically and economically to obtain an optimal additional recovery. This research was conducted to increase oil production by injection of Methyl Ester Sulfonate (MES). This study begins with a screening parameter crude oil, formation water, Berea’s core, and determination of phase behavior, interfacial tension (IFT), thermal stability, imbibition, and core flooding tests. The result for concentratin optimum in 0.3% MES and had IFT 0.3267 dyne/cm. The results of core flooding tests are: Recovery factor of waterflooding is 33.95 % and recovery factor of MES injection is 4.19 %.</em>


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 55-60
Author(s):  
Wenting Dong ◽  
Dong Zhang ◽  
Keliang Wang ◽  
Yue Qiu

AbstractPolymer flooding technology has shown satisfactorily acceptable performance in improving oil recovery from unconsolidated sandstone reservoirs. The adsorption of the polymer in the pore leads to the increase of injection pressure and the decrease of suction index, which affects the effect of polymer flooding. In this article, the water and oil content of polymer blockages, which are taken from Bohai Oilfield, are measured by weighing method. In addition, the synchronous thermal analyzer and Fourier transform infrared spectroscopy (FTIR) are used to evaluate the composition and functional groups of the blockage, respectively. Then the core flooding experiments are also utilized to assess the effect of polymer plugs on reservoir properties and optimize the best degradant formulation. The results of this investigation show that the polymer adsorption in core after polymer flooding is 0.0068 g, which results in a permeability damage rate of 74.8%. The degradation ability of the agent consisting of 1% oxidizer SA-HB and 10% HCl is the best, the viscosity of the system decreases from 501.7 to 468.5 mPa‧s.


2020 ◽  
Vol 17 (6) ◽  
pp. 1065-1074
Author(s):  
Abdullah Musa Ali ◽  
Amir Rostami ◽  
Noorhana Yahya

Abstract The need to recover high viscosity heavy oil from the residual phase of reservoirs has raised interest in the use of electromagnetics (EM) for enhanced oil recovery. However, the transformation of EM wave properties must be taken into consideration with respect to the dynamic interaction between fluid and solid phases. Consequently, this study discretises EM wave interaction with heterogeneous porous media (sandstones) under different fluid saturations (oil and water) to aid the monitoring of fluid mobility and activation of magnetic nanofluid in the reservoir. To achieve this aim, this study defined the various EM responses and signatures for brine and oil saturation and fluid saturation levels. A Nanofluid Electromagnetic Injection System (NES) was deployed for a fluid injection/core-flooding experiment. Inductance, resistance and capacitance (LRC) were recorded as the different fluids were injected into a 1.0-m long Berea core, starting from brine imbibition to oil saturation, brine flooding and eventually magnetite nanofluid flooding. The fluid mobility was monitored using a fibre Bragg grating sensor. The experimental measurements of the relative permittivity of the Berea sandstone core (with embedded detectors) saturated with brine, oil and magnetite nanofluid were given in the frequency band of 200 kHz. The behaviour of relative permittivity and attenuation of the EM wave was observed to be convolutedly dependent on the sandstone saturation history. The fibre Bragg Grating (FBG) sensor was able to detect the interaction of the Fe3O4 nanofluid with the magnetic field, which underpins the fluid mobility fundamentals that resulted in an anomalous response.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 319 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Cheng Fu ◽  
Ying Wang ◽  
Haoran Cheng

Previous studies showed the difficulty during polymer flooding and the low producing degree for the low permeability layer. To solve the problem, Daqing, the first oil company, puts forward the polymer-separate-layer-injection-technology which separates mass and pressure in a single pipe. This technology mainly increases the control range of injection pressure of fluid by using the annular de-pressure tool, and reasonably distributes the molecular weight of the polymer injected into the thin and poor layers through the shearing of the different-medium-injection-tools. This occurs, in order to take advantage of the shearing thinning property of polymer solution and avoid the energy loss caused by the turbulent flow of polymer solution due to excessive injection rate in different injection tools. Combining rheological property of polymer and local perturbation theory, a rheological model of polymer solution in different-medium-injection-tools is derived and the maximum injection velocity is determined. The ranges of polymer viscosity in different injection tools are mainly determined by the structures of the different injection tools. However, the value of polymer viscosity is mainly determined by the concentration of polymer solution. So, the relation between the molecular weight of polymer and the permeability of layers should be firstly determined, and then the structural parameter combination of the different-medium-injection-tool should be optimized. The results of the study are important for regulating polymer injection parameters in the oilfield which enhances the oil recovery with reduced the cost.


1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


Sign in / Sign up

Export Citation Format

Share Document